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We develop a mean-field electron-vibrational theory of light-induced optical prop-
erties of photonic organic materials taking the collective effects into account. The
theory contains experimentally measured quantities that make it closely related
to experiment, and provides a possibility of generalization to a nonlinear regime.
Between other things, we explain the additional red shift of the H-aggregate absorp-
tion spectra (that are blue-shifted as a whole). We apply the theory to experiment
on fraction of a millimeter propagation of Frenkel exciton polaritons in photoex-
cited organic nanofibers made of thiacyanine dye. A good agreement between theory
and experiment is obtained. © 2018 Author(s). All article content, except where oth-
erwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5030683

I. INTRODUCTION

Recently Noginov et al. demonstrated that purely organic materials characterized by low losses
with negative dielectric permittivities can be easily fabricated.1 Specifically, the substantially strong
negative dielectric permittivity demonstrated in zinc tetraphenylporphyrin (ZnTPP), suggests that this
dye compound can function as a “plasmonic” material. The experimental demonstration of a surface
polariton propagating at the ZnTPP/air interface has been realized.1 Gentile et al.2 showed that
polymer films doped with J-aggregated (TDBC) molecules might exhibit a negative real permittivity
in the vicinity of the exciton resonance. Thin films of such material may support surface exciton
polariton (EP) modes, in much the same way that thin metal films support surface plasmon-polariton
modes. Furthermore, they used the material parameters derived from experiment to demonstrate that
nanostructured excitonic materials may support localized surface EP modes. And even the dramatic
laser-induced change of the dielectric permittivity of dyes may be realized3 that can enable us to
control the propagation of EP modes.

In addition, organic dye nanofibers demonstrated long-range Frenkel EP propagation at room
temperature.4,5 The long-range Frenkel EPs are formed in organic dye nanofibers at room temperatures
owing to a considerably larger oscillator strength compared to inorganic semiconductors.4 To realize
such long-range propagation, the Frenkel EPs should be stable. Their stability is governed by splitting
between two branches of the polariton dispersion, the correct calculation of which is of decisive
importance. However, this splitting is of the same order of magnitude as the bandwidth of the exciton
line. This necessitates the proper description of the Frenkel exciton line shape that is impossible
without taking the electron-vibrational interaction into account (especially for H-aggregates, as it
took place in experiment4). In other words, we needs in an EP theory that takes electron-vibrational
interaction into account in a simple way and provides a possibility of generalization to a nonlinear
regime.

In this work we develop a mean-field electron-vibrational theory of Frenkel EPs in organic dye
structures and apply it to experiment.4 Our consideration is based on the model of the interaction
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of strong shaped laser pulse with organic molecules, Refs. 6–8, extended to the dipole-dipole inter-
molecular interactions in the condensed matter. These latters results in two options. The first option
correctly describes the behaviour of the first moment of molecular spectra in condensed matter, and
specifically, the red shift, according to the Clausius-Mossotti Lorentz-Lorentz (CMLL) mechanism.9

The second option is related to the dramatic modification of molecular spectra in condensed mat-
ter due to aggregation of molecules into J- or H-aggregates. The theory contains experimentally
measured quantities that makes it closely related to experiment. Between other things, using the
first option, we explain the additional red shift of the H-aggregate experimental absorption spec-
tra10 (that are blue-shifted as a whole, and the lineshape of which is described by the second
option).

The paper is organized as follows. We start with the derivation of equations taking dipole-dipole
intermolecular interactions in condensed matter into account. Then we describe the absorption of
H-aggregates, Section III, where we show that only taking both options of our mean-field theory into
account can explain the experimental results. In Section IV we apply the theory to experiment,4 and
in Section V, we briefly conclude.

II. DERIVATION OF EQUATIONS FOR DIPOLE-DIPOLE INTERMOLECULAR
INTERACTIONS IN CONDENSED MATTER

In this section we shall extend equations for vibrationally non-equilibrium populations of molec-
ular electronic states of Refs. 6–8 to a condensed matter. In this picture we considered a molecule
with two electronic states n = 1 (ground) and 2 (excited) in a solvent described by the Hamiltonian

H0 =

2∑
n=1

|n〉[En + Wn(Q)]〈n| (1)

where E2 > E1, En is the energy of state n, Wn(Q) is the adiabatic Hamiltonian of reservoir R (the
vibrational subsystems of a molecule and a solvent interacting with the two-level electron system
under consideration in state n). The molecule is affected by electromagnetic field E(t)

E(t)=
1
2

eE(t) exp(−iωt) + c.c. (2)

the frequency of which is close to that of the transition 1→ 2. Here E(t) describes the change of the
pulse amplitude in time, e is unit polarization vector.

Since an absorption spectrum of a large molecule in condensed matter consists from overlapping
vibronic transitions, we shall single out the contribution from the low frequency (LF) optically active
(OA) vibrations {ωs} to Wn(Q): Wn(Q) = WnM + Wns where Wns is the sum of the Hamiltonian
governing the nuclear degrees of freedom of the solvent in the absence of the solute and LFOA
intramolecular vibrations, and the part which describes interactions between the solute and the nuclear
degrees of freedom of the solvent; WnM is the Hamiltonian representing the nuclear degrees of freedom
of the high frequency (HF) OA vibrations of the solute molecule.

The influence of the vibrational subsystems of a molecule and a solvent on the electronic transition
within the range of definite vibronic transition related to HFOA vibration (≈ 1000 − 1500cm−1) can
be described as a modulation of this transition by LFOA vibrations {ωs}.11 We suppose that ~ωs

� kBT. Thus {ωs} is an almost classical system. In accordance with the Franck-Condon principle,
an optical electronic transition takes place at a fixed nuclear configuration. Therefore, the quantity
u1s(Q)=W2s(Q) − W1s(Q) − 〈W2s(Q) − W1s(Q)〉1 representing electron-vibration coupling is the
disturbance of nuclear motion under electronic transition where 〈〉n stands for the trace operation over
the reservoir variables in the electronic state n. Electronic transition relaxation stimulated by LFOA
vibrations is described by the correlation function K(t) = 〈α(0)α(t)〉 of the corresponding vibrational
disturbance with characteristic attenuation time τs

12–14 where α ≡−u1s/~. The analytic solution of
the problem under consideration has been obtained due to the presence of a small parameter. For
broad vibronic spectra satisfying the “slow modulation” limit, we have σ2sτ

2
s � 1 where σ2s = K(0)

is the LFOA vibration contribution to a second central moment of an absorption spectrum, the half
bandwidth of which is related to σ2s as ∆ωabs = 2

√
2σ2s ln 2. According to Refs. 13 and 14, the
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following times are characteristic for the time evolution of the system under consideration: σ−1/2
2s <

T ′ << τs, where σ−1/2
2s and T ′ = (τs/σ2s)1/3 are the times of reversible and irreversible dephasing

of the electronic transition, respectively. The characteristic frequency range of changing the optical
transition probability can be evaluated as the inverse T ′, i.e. (T ′)−1. Thus, one can consider T ′ as a
time of the optical electronic transition. Therefore, the inequality τs � T ′ implies that the optical
transition is instantaneous where relation T ′/τs < < 1 plays the role of a small parameter. This made
it possible to describe vibrationally non-equilibrium populations in electronic states 1 and 2 ρjj(α, t)
(j = 1, 2) by balance equations for the intense pulse excitation (pulse duration tp > T ′) and solve the
problem.6–8,15 For brevity, we consider here only one vibronic transition related to a HFOA vibration.
Generalization to the case of a number of vibronic transitions will be made below.

The equation under discussion were written for the partial density matrix of the system ρjj(α, t)
that described the system distribution in states 1 and 2 with a given value of α at time t. The com-
plete density matrix averaged over the stochastic process which modulates the system energy levels, is
obtained by integration of ρij(α, t) over α, 〈ρ〉ij(t)= ∫ ρij(α, t)dα, where quantities 〈ρ〉jj(t) are the nor-
malized populations of the corresponding electronic states: 〈ρ〉jj(t)≡ nj, n1 + n2 = 1. Knowing ρjj(α, t),
one can calculate the positive frequency component of the polarization P(+)(t)=ND12〈ρ〉21(t),
and the susceptibility χ(Ω, t)6 that enables us to obtain the dielectric function ε due to relation
ε(Ω, t) = 1 + 4π χ(Ω, t). Here N is the density of molecules, and D12 is the electronic matrix element
of the dipole moment operator. It is worthy to note that magnitude ε(Ω, t) does make sense, since
it changes in time slowly with respect to dephasing. In other words, ε(Ω, t) changes in time slowly
with respect to reciprocal characteristic frequency domain of changing ε(Ω).

Let us include now the dipole-dipole intermolecular interactions in the condensed matter that
are described by Hamiltonian12,16,17

Hint = ~
∑
m,n

Jmnb†mbn (3)

where Jmn is the resonant exciton coupling. Then Eq. (6) of Ref. 6 describing vibrationally non-
equilibrium populations in electronic states j = 1, 2 for the exponential correlation function K(t)/K(0)
≡ S(t) = exp(−|t|/τs) can be written as

∂

∂t
ρjj(α, t)=−i~−1[H0(α, t) + Hint − D · E(t), ρ(α, t)]jj + Ljj ρjj(α, t) (4)

where j = 1, 2, and we added the term H int into the Hamiltonian; the operator Ljj is determined by
the equation:

Ljj = τ
−1
s

[
1 +

(
α − δj2ωst

) ∂

∂
(
α − δj2ωst

) +

+σ2s
∂2

∂
(
α − δj2ωst

)2

]
, (5)

describes the diffusion with respect to the coordinate α in the corresponding effective parabolic
potential U j(α), δij is the Kronecker delta,ωst = β~σ2s is the Stokes shift of the equilibrium absorption
and luminescence spectra, β = 1/kBT. In the absence of the dipole-dipole intermolecular interactions
in the condensed matter, H int , Eq. (4) is reduced to Eq. (11) of Ref. 6.

Let us discuss the contribution of Hamiltonian Ĥ int to the change of ρij(α, t) in time. In other
words, we shall generalize Eq. (11) of Ref. 6 to the dipole-dipole intermolecular interactions in the
condensed matter. Using the Heisenberg equations of motion, one obtains that Ĥ int gives the following
contribution to the change of the expectation value of excitonic operator bk in time

d
dt
〈bk〉 ∼

i
~
〈[Ĥint , bk]〉 ≡

i
~

Tr([Ĥint , bk]ρ)

=−i
∑
n,k

Jkn〈(n̂k1 − n̂k2)bn〉 (6)

where n̂k1 = bkb†k , and n̂k2 = b†kbk is the exciton population operator. Considering an assembly of
identical molecules, one can write 〈bk〉= ρ21(α, t)18 if averaging in Eq. (6) is carried out using
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density matrix ρ(α, t). Consider the expectation value 〈(n̂k1 − n̂k21)bn〉=Tr[(n̂k1 − n̂k2)bnρ(αk , αn, t)]
for n,k where αm is the effective vibrational coordinate of a molecule m (m = k, n). Due to fast
dephasing (see above), it makes sense to neglect all correlations among different molecules,12 and
set 〈(n̂k1 − n̂k2)bn〉= 〈n̂k1 − n̂k2〉〈bn〉 and correspondingly ρ(αk , αn, t)' ρ(αk , t)ρ(αn, t), i.e. density
matrix ρ(αk , αn, t) is factorized. Here from dimension consideration one expectation value should be
calculated using density matrix ρ(α, t), and another one - using 〈ρ〉(t)= ∫ ρ(α, t)dα. Since we sum
with respect to n, it would appear reasonable to integrate with respect to αn. However, this issue is
not so simple. The point is that in addition to intramolecular vibrations, there is a contribution of
low-frequency intermolecular and solvent coordinates into effective coordinate α. Because of this,
partitioning the vibrations into αk and αn groups is ambiguous, and the mean-field approximation
gives two options

p〈b〉〈n̂1 − n̂2〉=

(
pρ21(α, t)∆n

p〈ρ21〉(t)∆′(α, t)

)
(7)

where ∆′(α, t)= ρ11(α, t) − ρ22(α, t), p ≡−
∑

n,kJkn, ∆n ≡ n1 − n2. Below we shall discuss which
option better corresponds to a specific experimental situation. Consideration based on non-equilibrium
Green functions (GF) shows that the terms pρ21(α, t) and p〈ρ21〉(t) on the right-hand-side of Eq. (7)
represent the self-energy, iΣ21(t), and the terms ∆n and ∆′(α, t) - the difference of the “lesser” GFs
for equal time arguments, (i~/N)[G<

11(t, t)−G<
22(t, t)], that are the density matrix, i.e. p〈b〉〈n̂1 − n̂2〉=

−(~/N)Σ21(t)[G<
11(t, t)−G<

22(t, t)], respectively. In other words, for the first line on the right-hand-side
of Eq. (7), the self-energy depends on α and the “lesser” GFs G<

11(t, t) −G<
22(t, t) do not. In contrast,

for the second line on the right-hand-side of Eq. (7), the self-energy does not depend on α and the
“lesser” GFs G<

11(α; t, t)−G<
22(α; t, t) do depend. This yields ∂ρ21(α, t)/∂t ∼−(i~/N)Σ21(t)[G<

11(t, t)−
G<

22(t, t)]. Adding term ”−(i~/N)Σ21(t)[G<
11(t, t)−G<

22(t, t)] ” to the right-hand side of Eq. (9) of Ref. 6
for the non-diagonal density matrix ρ̃21(α, t)

∂

∂t
ρ̃21(α, t) + i(ω21 − ω − α) ρ̃21(α, t)≈

i
2~

D21 · E(t)∆′(α, t) −
i~
N
Σ̃21(t)[G<

11(t, t) − G<
22(t, t)] (8)

where ω21 is the frequency of Franck-Condon transition 1 → 2, ρ̃21 = ρ21 exp(iωt), Σ̃21 =

Σ21 exp(iωt), and using the procedure described there, we get the extensions of Eq. (11) of Ref. 6 to
the dipole-dipole intermolecular interactions in the condensed matter.

A. Self-energy depending on effective vibrational coordinate α

Consider first the case of self-energy depending on effective vibrational coordinate α (the first
line on the right-hand-side of Eq. (7)) when the main contribution to α is due to low-frequency
intermolecular vibrations and solvent coordinates. Then Eq. (8) becomes

∂

∂t
ρ̃21(α, t) + i(ω21 − ω − p∆n − α) ρ̃21(α, t)≈

i
2~

D21 · E(t)∆′(α, t) (9)

Solving Eq. (9) for ρ̃21(α, t) and substituting for the corresponding expression in Eq. (4), we arrive
to equation

∂ρjj(α, t)

∂t
=Ljj ρjj(α, t) +

(−1)jπ

2
∆
′(α, t)|ΩR(t)|2 ×

×δ[ω21 − p∆n − ω − α] (10)

that was obtained in Ref. 19. Here ω21 is the frequency of Franck-Condon transition 1→ 2, ΩR(t)=
(D12 · e)E(t)/~ is the Rabi frequency, D12 is the electronic matrix element of the dipole moment
operator. In that case, as one can see from Eq. (10), the self-energy iΣ21(t)= pρ21(α, t) results in
the frequency shift of spectra “ −p∆n” without changing the line shapes. One can show that this
approach correctly describes the change of the first moment of optical spectra in the condensed matter.

Calculations of p for isotropic medium give p=
4π
3~
|D12 |

2N > 012,19 that corresponds to a red shift,

according to the Clausius-Mossotti Lorentz-Lorentz (CMLL) mechanism.9

Integration of Eq. (10) is achieved by the Green’s function15
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Gjj(α, t; α′, t ′)=
1

√
2πσ(t − t ′)

exp{−[(α − δj2ωst) − (α′ − δj2ωst)S
(
t − t ′

)
]2/

(
2σ

(
t − t ′

))
} (11)

where σ(t − t ′)=σ2s[1 − S2(t − t ′)], for the initial condition,

ρ(0)
jj (α)≡ ρjj(α, t = 0)= δj1(2πσ2s)

−1/2 exp(−
α2

2σ2s
) (12)

We obtain

ρjj(α, t)= ρ(0)
jj (α) + (−1)j π

2

×

∫ t

0
dt ′ |ΩR(t ′)|2∆′

(
ω21 − p∆n − ω, t ′

)
×Gjj

(
α, t;ω21 − p∆n − ω, t ′

)
(13)

where ∆′(ω21 − p∆n − ω, t ′) satisfies nonlinear integral equations that can be easily obtained from
Eq. (13). Integrating both sides of Eq. (13) with respect to α and bearing in mind that
∫
∞
−∞ Gjj(α, t;ω21 − ω(t ′), t ′)dα = 1, we get

dnj

dt
= (−1)j π

2
|ΩR(t)|2∆′(ω21 − p∆n − ω, t) (14)

1. Fast vibrational relaxation

Let us consider the particular case of fast vibrational relaxation when one can put the normalized
correlation function S(t − t ′)≡K(t − t ′)/K(0) equal to zero. Physically it means that the equilibrium
distributions into the electronic states have had time to be set during changing the pulse parameters.
Bearing in mind that for fast vibronic relaxation

∆
′(α, t)=

n1(t)

(2πσ2s)1/2
exp(−

α2

2σ2s
) −

−
n2(t)

(2πσ2s)1/2
exp[−

(α − ωst)2

2σ2s
], (15)

substituting the last equation into Eq. (14), one gets the equations for the populations of electronic
states n1,2

dnj

dt
= (−1)jσa(ω21)J̃(t)Re

[
n1W̄a(ω + p∆n) −

−n2W̄f (ω + p∆n)
]
− (−1)j n2

T1
(16)

where n1 + n2 = 1, σa is the cross section at the maximum of the absorption band, J̃(t) is the
power density of exciting radiation, W̄a(f )(ω)=Wa(f )(ω)/Fa,max, Fa, max is the maximum value of the
absorption line (see below), and we added term “(−1)jn2/T1” taking the lifetime T1 of the excited
state into account. Here “ −iWa(f )(ω)” is the line-shape function of a monomer molecule for the
absorption (fluorescence) for fast vibronic relaxation. In the case under consideration, it is related to
the line-shape function, ∫ dα∆′(α, t)ζ(ω − ω21 + α)/π, by formula∫ ∞

−∞

dα∆′(α, t)ζ(ω − ω21 + α)/π =−i[n1(t)Wa(ω) − n2(t)Wf (ω)] (17)

where ζ(ω − ω21 + α)= P
ω−ω21+α − iπδ(ω − ω21 + α), P is the symbol of the principal value.

The imaginary part of “ − iWa(f )(ω)” with sign minus, −Im[−iWa(f )(ω)] =ReWa(f )(ω) ≡
Fa(f )(ω), describes the absorption (fluorescence) lineshapes of a monomer molecule, and the real
part, Re[−iWa(f )(ω)] =ImWa(f )(ω), describes the corresponding refraction spectra. For the “slow
modulation” limit considered in the beginning of this section, quantities Wa(f )(ω) and Fa(f )(ω) are
given by

Wa(f )(ω)=

√
1

2πσ2s
4(
ω − ω21 + δa(f ),fωst

√
2σ2s

) (18)
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where 4(z) = exp(−z2)[1 + ierfi(z)] is the probability integral of a complex argument,20 and

Fa(f )(ω)=

√
1

2πσ2s
exp[−

(
ω21 − ω − δa(f ),fωst

)2

2σ2s
] (19)

Eq. (16) was applied to the optical control of Coulomb blocking in nanojunctions and switching
waves in bistable organic thin films, in Refs. 19 and 21, respectively.

B. Population difference (“lesser” GFs) depending on effective vibrational coordinate α

Consider now the case when the population difference depends on effective vibrational coordinate
α (the second line on the right-hand-side of Eq. (7); the main contribution to α is due to intramolecular
vibrations). Then using Eqs. (4) and (8), we arrive to equation

∂ρjj(α, t)

∂t
=Ljj ρjj(α, t) +

(−1)jπ

2
∆
′(α, t)

× δ(ω21 − ω − α)|Ωeff (t)|2 (20)

where Ωeff (t) = ΩR(t) + 2p〈ρ21〉(t) = ΩR(t) + 2iΣ21(t) is the effective Rabi frequency that can be
written as

Ωeff (t)=
ΩR(t)

1 + p
∫

dα∆′(α, t)ζ(ω − ω21 + α)
, (21)

One can see that in contrast to the self-energy depending on effective vibrational coordinate α (see
above), here the self-energy Σ21(t) = −ip〈ρ21〉(t) (the second line on the right-hand-side of Eq. (7))
results in the change of both the frequency shift of spectra and their lineshapes. In that case considering
the dense collection of molecules under the action of one more (weak) field

Ẽ(t)=
1
2

eẼ(t) exp(−iΩt) + c.c.,

one gets for the positive frequency component of the polarization P+ = ND12〈ρ21〉(t)

P+(Ω, t)=
−ND12(D21 · e)ηẼ(t)/(2~)

[
∫

dα∆′(α, t)ζ(Ω − ω21 + α)]−1 + p
, (22)

for the susceptibility

χ(Ω, t)=−
Nη |D12 |

2

~

∫
dα∆′(α, t)ζ(Ω − ω21 + α)

1 + p
∫

dα∆′(α, t)ζ(Ω − ω21 + α)
(23)

and the dielectric function ε(Ω) = ε0(1 + 4π χ(Ω))22 that in our case is given by

ε(Ω, t)= ε0[1 −
q
∫

dα∆′(α, t)ζ(Ω − ω21 + α)

1 + p
∫

dα∆′(α, t)ζ(Ω − ω21 + α)
] (24)

where ε0 = n2
0, n0 is the background refractive index of the medium, q≡ 4πη

N |D12 |
2

~
, η = 1/3 for

randomly oriented molecules, and η = 1 for the molecules of the same orientation.

1. Line-shape in the fast vibrational relaxation limit

Below we shall see that the approximation based on the self-energy integrated on the effective
vibrational coordinate (the second line on the right-hand-side of Eq. (7)) correctly describe the
exciton spectra. In that case the fast vibrational relaxation limit should be based on the equilibrium
state of the collective system (molecules coupled by the dipole-dipole interaction). However, the
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exciton wave function in the ground state is the product of the wave functions of monomers16 (no
intermolecular interactions). Because of this, for the absorption of weak radiation, one should put j = 1
and ∆′(α, t)=∆′(0)(α) in Eqs. (20) and (21) where ∆′(0)(α)= ρ(0)

11 (α)= (2πσ2s)−1/2 exp[−α2/(2σ2s)]
is the equilibrium value of ∆′(α, t) corresponding to the equilibrium value for a monomer in the
ground state, and we retained only terms that are proportional to |ΩR(t)|2 on the right-hand side of
Eq. (20). The next procedure is similar to that used for obtaining Eq. (16). Integrating Eq. (20), using
Green function, Eq. (11), we obtain an integral equation that is similar to Eq. (13). Then integrating
both sides of the obtained integral equation with respect to α, and bearing in mind Eq. (17), we get

dn1

dt
=−σa(ω21)J̃(t)Re

W̄a(ω)
1 − ipπWa(ω)

+
n2

T1
(25)

where the term Re{W̄a(ω)/[1−ipπWa(ω)]} describes the absorption spectrum of molecules susceptible
to the dipole-dipole intermolecular interactions expressed through their monomer spectra Wa.

a. Description of the absorption of J-aggregates. Applying expression Re{W̄a(ω)/[1−ipπWa(ω)]}
on the right-hand-side of Eq. (25) to the description of the absorption of J-aggregates, one should
take into account that the Gaussian shape of the monomer absorption spectrum obtained in the “slow
modulation” limit, Eq. (19), is correct only near the absorption maximum. The wings decline much
slower as (ω21 − ω)−4.23 At the same time, the expression under discussion has a pole, giving strong
absorption, when 1/(pπ) = −ImWa(ω). If parameter of the dipole-dipole intermolecular interaction
p is rather large, the pole may be at a large distance from the absorption band maximum where the
“slow modulation” limit breaks down. This means one should use exact expression for the monomer
spectrum Wa that is not limited by the “slow modulation” approximation, and properly describes
both the central spectrum region and its wings. The exact calculation of the vibrationally equilibrium
monomer spectrum for the Gaussian-Markovian modulation with the exponential correlation function
S(t) = exp(−|t|/τs) gives23,24 (see Eqs. (A3) and (A4) of the Appendix)

Wa(ω)=
τs

π

Φ(1, 1 + xa;σ2sτ
2
s )

xa
(26)

where xa = τs/(2T1)+σ2sτ
2
s +iτs(ω21−ω),Φ(1, 1+xa;σ2sτ

2
s ) is a confluent hypergeometric function.20

Figs. 1 and 2 show the calculation results of the absorption spectra of J-aggregates according
to the expression Re{Wa(ω)/[1 − ipπWa(ω)]} on the right-hand side of Eq. (25) and Eq. (26), and
their comparison with the monomer spectra ReWa(ω). The spectra of Fig. 1 correspond to the slow
modulation case with parameters close to those of molecule LD690:6

√
σ2s = 546 cm−1, τs = 10−13s

that gives ωst = 1420 cm−1. We put T1 = 10−9s.
One can see that in spite of strong narrowing the J-aggregate spectra with respect to those

of monomers, the vibrations still give rather important contribution to broadening the J-aggregate
spectra that may be crucial. Indeed, the half bandwidth of the J-aggregate absorption spectrum is
about 3 · 1012 rad/s that may far exceed the lifetime contribution. So, disregarding vibrations in the
description of the J-aggregate spectra may be incorrect. Moreover, above parameters for molecule

FIG. 1. Absorption spectra (in terms of τs/π) of the J-aggregate (solid line) and the corresponding monomer (dashed line) in
the case of slow modulation (

√
σ2sτs = 10.9>> 1) and pτs = 42. Dimensionless parameter is δ = τs(ω − ω21).
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FIG. 2. Absorption spectra (in terms of τs/π) of the J-aggregate (solid line) and the corresponding monomer (dashed line)
for
√
σ2sτs = 3.16 and pτs = 5.

LD690 in methanol were obtained using only LFOA vibrations {ωs} for the simulation of its spectra.6

If one in addition uses also high frequency OA intramolecular vibrations (like C-C ∼ 1400 cm−1)
for the simulation (see below), then the second central moment σ2s should be related rather to a
vibronic transition with respect to the high frequency OA vibration than to the whole spectrum, i.e.
the value of σ2s diminishes. Fig. 2 shows absorption spectra of the J-aggregate and the corresponding
monomer when parameter

√
σ2sτs = 3.16 is smaller than that for Fig. 1. One can see lesser narrowing

the J-aggregate spectrum with respect to that of a monomer. In contrast, the J-aggregate absorption
spectrum calculated using the monomer spectrum Wa, Eq. (18), and, as a consequence, the Gaussian
absorption spectrum, Eq. (19), is extremely narrow.

For fast modulation when σ2sτ
2
s << 1, the aggregate spectrum only shifts with respect to the

monomer one without changing its shape. Indeed, Φ(1, 1 + xa(f );σ2sτ
2
s )≈ 1 for σ2sτ

2
s << 1. In that

case Wa(ω) ≈ (τs/π)/xa, and the term Re{W̄a(ω)/[1 − ipπWa(ω)]} on the right-hand side of Eq. (25)
becomes

Re
Wa(ω)

1 − ipπWa(ω)
≈

1
π

Re
1

1
2T1

+ σ2sτs + i(ω21 − ω − p)

=Wa(ω + p) (27)

In other words, if the monomer spectrum has Lorentzian shape, the aggregate spectrum is simply
shifted monomer spectrum. In that case both the approach based on the self-energy depending on the
effective vibrational coordinate, and the approach based on the population difference (“lesser” GFs)
depending on the effective vibrational coordinate give the same absorption spectrum of molecules
susceptible to the dipole-dipole intermolecular interactions.

b. J-aggregates under stronger radiation. Touching on how Eq. (25) can be extended to stronger
radiation, one should recognize two limit cases. In the first case an optical transitions occur near
zero quasi-momentum k ≈ 0. After the light absorption a quasi-equilibrium is established. However,
the luminescence should be resonant to the absorption line due to the quasi-momentum conser-
vation.16 This case is realized for J-aggregates.25 The second case is characterized by a strong
electron-vibrational interaction when the relaxation to the equilibrium vibrational configuration in
the excited state occurs before the excitation transfers to the neighboring molecule.26 It seems such
a case is realized for the H-aggregates of thiacyanine (TC) dye molecules where a large Stokes
shift between absorption and photoluminescence spectra of the TC aggregates was observed in the
aqueous solution.27,28 Since the description of the H-aggregate spectra necessitates including also
the HFOA vibrations and the mechanism described by Eq. (16) (see Section III), the extension to
stronger radiation for H-aggregates will be carried out elsewhere.
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For the first case one can put ∆′(α, t)=∆n(2πσ2s)−1/2 exp[−α2/(2σ2s)] in Eqs. (20) and (21),
and we obtain the extension of Eq. (25) to stronger radiation

dn1

dt
=−σa(ω21)J̃(t)Re

∆nW̄a(ω)
1 − ipπ∆nWa(ω)

+
n2

T1
(28)

In Eq. (28) the probability of the light induced transitions may be of the same order of magnitude as
T−1

1 , however, the first should be smaller than the reciprocal dephasing time.

The term “Re ∆nW̄a(ω)
1−ipπ∆nWa(ω) ” on the right-hand-side of Eq. (28) describes a nonlinear absorption. In

particular case of weak radiation when∆n = 1, this term recovers the coherent exciton scattering (CES)
approximation.10,29,30 The latter is well suited to describing the absorption spectrum lineshape for
J-aggregates using their monomer spectra and the intermolecular interaction strength that is a fitting
parameter. As to the absorption spectra of H-aggregates, the CES approximation describes correctly
only their lineshapes. The positions of the H-aggregate spectra calculated in the CES approximation
should be corrected.10 This issue will be considered in more details in Section III, since we apply our
theory to the EPs in H-aggregates of TC dye molecules below.

It is worthy to note that the term 1/[1 − ipπWa(ω)] on the right-hand side of Eq. (25) (and the
corresponding term on the right-hand side of Eq. (28) for ∆n = 1) amounts to the Pade approximant
[0/1]31 that is the sum of diagrams of a certain type.32 Indeed, the term under discussion is the sum
of the infinite geometrical series

1
1 − ipπWa(ω)

=

∞∑
m=0

pm[iπWa(ω)]m (29)

where the right-hand side of Eq. (29) multiplied by Wa(ω) may be considered as a Born series with
the interaction parameter p.

Fig. 3 shows the calculation results of the nonlinear absorption spectra of J-aggregates according
to the expression Re{∆nWa(ω)/[1 − ipπ∆nWa(ω)]} on the right-hand-side of Eq. (28) for different
values of the population difference ∆n. The vibrationally equilibrium monomer absorption spec-
trum Wa(ω) was calculated using Eq. (26). The spectra of Fig. 3 demonstrate the saturation effect
accompanied by the blue shift of the spectra when the population difference ∆n diminishes. Such a
frequency shift arises also in the many-body theory of 1D Frenkel excitons33 that does not consider
the vibrations. In contrast, our theory does take the vibrations into account that enables us to correctly
describe the lineshape of J-aggregates.

FIG. 3. Nonlinear absorption spectra (in terms of τs/π) of the J-aggregate for ∆n = 1 (solid line), ∆n = 0.8 (dotted line), ∆n
= 0.6 (dash dotted line), and the corresponding monomer absorption spectrum (dashed line) for

√
σ2sτs = 3.16 and pτs = 10.

Dimensionless parameter is δ = τs(ω − ω21), τs/(2T1) < < 1.
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III. PROPER DESCRIPTION OF THE LINESHAPE AND THE FREQUENCY SHIFT OF
ABSORPTION SPECTRA OF H-AGGREGATES

Applying expression Re{Wa(ω)/[1 − ipπWa(ω)]} (see Section II B 1) to the description of the
absorption of H-aggregates, one should take into account also HFOA intramolecular vibrations, in
addition to the LFOA vibrations {ωs} under consideration in our paper. The intramolecular relaxation
related to the OAHF vibrations takes place in a time shorter than intermolecular relaxation of the low
frequency system {ωs}.7,8,34–36 Therefore, we can consider the density matrix averaged with respect
to the intramolecular OAHF vibrations:

ρns(t)=TrM ρnn(t) (30)

where the total density matrix ρnn(t) is factorized

ρnn(t)= ρnM ρns(t) (31)

and

ρnM = exp(−βWnM )/TrM exp(−βWnM )

is the equilibrium density matrix of the intramolecular OAHF vibrations. Here TrM denotes the
operation of taking a trace over the variables of the intramolecular OAHF vibrations, β = 1/(kBT ).
Using density matrix ρns, one can obtain an equation akin to Eq. (25) that also contains expression
Re{Wa(ω)/[1− ipπWa(ω)]} (see Section II B 1) for the description of the absorption of H-aggregates
where the monomer spectrum Wa should include the contribution from the HFOA intramolecular
vibrations. We will consider one normal high frequency intramolecular oscillator of frequency ω0

whose equilibrium position is shifted under electronic transition. Its characteristic function f αM (t) is
determined by the following expression:7,37

fαM (t)= exp(−S0 coth θ0)
∞∑

k=−∞

Ik(S0/ sinh θ0)

× exp[k(θ0 + iω0t)] (32)

where S0 is the dimensionless parameter of the shift, θ0 = ~ω0/(2kBT ), In(x) is the modi-
fied Bessel function of first kind.20 Then the monomer spectrum can be written as Wa(ω)=
(1/π) ∫

∞
0 f ∗αM (t) exp[i(ω−ω21)t+gs(t)]dt where gs(t) is given by Eq. (A4) of the Appendix. Integrating

with respect to t, one gets

Wa(ω)=
τs

π
exp(−S0 coth θ0)

∞∑
k=−∞

Ik(
S0

sinh θ0
)

× exp(kθ0)
Φ(1, 1 + xak ;σ2sτ

2
s )

xak
(33)

where xak = τs/(2T1)+σ2sτ
2
s + iτs(ω21−ω+kω0). Eq. (33) is the extension of Eq. (26) to the presence

of the HFOA intramolecular vibrations. For θ0 > > 1 we obtain

Wa(ω)=
τs

π
exp(−S0)

∞∑
k=0

Sk
0

k!

Φ(1, 1 + xak ;σ2sτ
2
s )

xak
(34)

As we mentioned above, expression Re{Wa(ω)/[1− ipπWa(ω)]} corresponds to the CES approx-
imation that describes well the shape of the absorption spectra of H-aggregates. However, the spectra
calculated in the CES approximation are blue shifted with respect to the experimental spectra of
pinacyanol in aqueous solution at 20

◦

C and in aqueous solution with 7.5% v/v ethanol at room
temperature.10 To resolve the problem, the authors of Ref. 10 empirically introduced additional
red shift that can be substantiated in our more general theory. Indeed, let us write down Eq. (8)
when both the self-energy (∼ ρ̃21) and the population difference depend on the effective vibrational
coordinate
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∂

∂t
ρ̃21(α, t) + i(ω21 − ω − p1 − α) ρ̃21(α, t)= i[

D21 · E(t)
2~

+ p2

∫
dαρ̃21(α, t)]ρ(0)

11 (α) (35)

Using the procedure described in Ref. 6, we get an equation similar to Eq. (20) (together with Eq. (21))
with the only difference that ω21 should be replaced by ω21 − p1, and p - by p2

∂ρ11(α, t)
∂t

=
− π2 ρ

(0)
11 (α)|ΩR(t)|2δ(ω21 − ω − p1 − α)

�����
1 + p2

∫
dαρ(0)

11 (α)ζ(ω + p1 − ω21 + α)
�����

2
+ L11ρ11(α, t) (36)

Then similar to Eq. (25), we obtain

dn1

dt
=−σa(ω21)J̃(t)Re

W̄a(ω + p1)
1 − ip2πWa(ω + p1)

+
n2

T1
(37)

where the term Re{W̄a(ω+p1)/[1− ip2πWa(ω+p1)]} describes the absorption spectrum of molecules
susceptible to the dipole-dipole intermolecular interactions expressed through their monomer spectra
Wa(ω + p1), Eq. (34) (see also Eq. (33)). Fig. 4 shows the calculation results of the absorption spectrum
of an H-aggregate according to the expression Re{Wa(ω + p1)/[1 − ip2πWa(ω + p1)]} on the right-
hand side of Eq. (37) and Eq. (34) (solid line), and its comparison with the monomer spectrum
ReWa(ω) (dash line) and the spectrum of H-aggregate, Re{Wa(ω)/[1 − ip2πWa(ω)]}, calculated
without the contribution of the CMLL mechanism (dash dot line). The values of parameters are found
by fitting the experimental spectrum of the linear absorption of LD690 in methanol:8 τs = 10−13s, kBT
= 210 cm−1, ~ωst /(2kBT ) = 1.99, S0 = 0.454,ω0 = 1130 cm−1, σ2s =ωstkBT /~. The spectra presented
in Fig. 4 manifest that though the shape of the H-aggregate spectrum is fully described by the self-
energy not depending on the effective vibrational coordinate, its position (including the additional
red shift of the experimental spectra of H-aggregates10) may be correctly described only taking the
CMLL mechanism into account. In other words, our more general theory enables us to describe both
the shape and the position of the experimental spectra of H-aggregates due to the self-energy and the
population difference (“lesser” GFs) both depending on the effective vibrational coordinate that leads
to their frequency dependence. This can be understood as follows. The frequency dependent “lesser”
GFs corresponding to the CES approximation describe well the spectral shapes of H-aggregates. The
latters can interact with each other by the dipole-dipole interaction leading to the CMLL red shift
that is described by the frequency dependent self-energy.

FIG. 4. Absorption spectra (in terms of τs/π) of the H-aggregate (solid line), the corresponding monomer (dash line) and
the H-aggregate without the contribution of the CMLL mechanism (dash dot line) for p1 = 500 cm−1 and p2 = −1500 cm−1

Dimensionless parameter is δ = τs(ω − ω21).
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In the case under consideration Eq. (24) for the dielectric function becomes

ε(ω)= ε0[1 +
iqπWa(ω + p1)

1 − iπp2Wa(ω + p1)
] (38)

where we put ∫
∞
−∞ dα∆′(0)(α)ζ(ω −ω21 + p1 + α)=−iπWa(ω + p1) for the vibrational equilibrium in

the ground state.

IV. APPLICATION TO THE EXCITON-POLARITON EXPERIMENT

The theory developed in Section III properly describes both the lineshape and the frequency shift
of the absorption spectra of H-aggregates. Therefore, it can be applied to the experiment on fraction
of a millimeter propagation of EPs in photoexcited fiber-shaped H-aggregates of TC dye at room
temperature.4

The transverse eigenmodes of the medium are obtained from the dispersion equation22

c2k2(ω)=ω2ε(ω) (39)

where dielectric function ε(ω) is given by Eq. (38) and depends on the monomer spectra Wa.
Fig. 5 shows the experimental absorption lineshape of TC monomer solution prepared by dis-

solving TC dye in methanol27 (top), and its theoretical description by ReWa, Eq. (34), (bottom).

FIG. 5. Experimental absorption lineshape of TC monomer solution prepared by dissolving TC dye in methanol27 (top), and
its theoretical description (in terms of τs/π) by ReWa, Eq. (34), (bottom).
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Good agreement is observed with the values of parameters ω21 = 23810 cm−1, 1/τs = 75 cm−1,
ω0τs = 20, S0 = 0.454, σ2sτ

2
s = 80 obtained by comparison between experimental and theoretical

curves.
The monomer spectrum found, Wa, enables us to calculate the aggregate absorption spectrum

according to the formula Re{Wa(ω + p1)/[1 − ip2πWa(ω + p1)]} (see Eqs. (37) and (38)) shown
in Fig. 6. Again good agreement between theoretical and experimental spectra is observed with
the values of parameters p1τs = 4, p2τs = −7 obtained by comparison between experimental and
theoretical curves. We did not make additional fitting since experimental absorption spectra of TC
aggregates and monomers were measured in different solvents27 (see caption to Fig. 6).

A. Polariton dispersion

Let us analyze Eq. (39) where the dielectric function is determined by Eq. (38) and depends on
the aggregate spectrum, Wa(ω + p1)/[1− ip2πWa(ω + p1)]. The parameters of the aggregate spectrum

FIG. 6. Experimental absorption and photoluminescence spectra of TC aggregates and monomers27 (top), and theoretical
description of aggregate absorption (in terms of τs/π) (bottom). In the top solid curve represents spectra of the aqueous
solution containing TC aggregates; dashed curve, spectra of a monomer solution prepared by dissolving TC dye in methanol.
In the bottom solid curve represents the spectrum of an aggregate; dashed curve - spectrum of a monomer. Dimensionless
parameter δ = τs(ω − ω21) increases when the wavelength decreases.
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were found above. In order to satisfy Eq. (39), the wave number k should be complex k = k ′ + ik
′′

.
Then using Eq. (39), we get for the real and imaginary part of k

k ′
c
n0
=ωRe

√
1 + iπq

Wa(ω + p1)
1 − iπp2Wa(ω + p1)

(40)

and

k ′′
c
n0
=ωIm

√
1 + iπq

Wa(ω + p1)
1 − iπp2Wa(ω + p1)

, (41)

respectively. Fig. 7 shows the Frenkel EP dispersion calculated using Eqs. (40) and (41).
To give physical insight into the Frenkel EP dispersion, we shall calculate also the dispersion

outside the resonance when k
′′

≈ 0. In that case Eq. (39) leads to the undamped polariton modes

k ′
c
n0
≈ω

√
1 − πqIm

Wa(ω + p1)
1 − iπp2Wa(ω + p1)

(42)

Taking spectrum Wa(ω) to be centered on ω = ωa and to have a finite width Γ, it is clear from the
dispersion relation30 that Wa(ω) ∼ (i/π)/(ω − ωa) for |ω − ωa| > > Γ, and we get

k ′
c
n0
≈ω

√
ω − (ωa − p1 − p2) − q
ω − (ωa − p1 − p2)

(43)

Eq. (43) leads to two branches of the polariton dispersion shown in Fig. 7, namely, the lower branch
for ω < ωa − p1 − p2, and the upper branch for ω > ωa − p1 − p2. For ω → ωa − p1 − p2 the
wavenumber diverges, k ′→∞. No solution of Eq. (43) exists for frequences between ωa − p1 − p2

and (ωa − p1 − p2) + q. In other words, there is a forbidden gap between ωa − p1 − p2 and (ωa − p1

− p2) + q separating the lower and upper polariton branch. However, in the gap range more precise
formulas, Eqs. (40) and (41), should be used, and the polariton dispersion shows the leaky part in the
splitting range between two branches, Fig. 7.

From Eq. (43) we get for low frequencies, ω < < ωa − p1 − p2, a photon-like dispersion

ω '
ck ′

n0
√

1 + q/(ωa − p1 − p2)
(44)

with a light velocity smaller than c/n0.
From the above discussion, it is evident that parameter q= 4π

~ ηN |D12 |
2 defines the separation

between the lower and upper polariton branch. For the molecules of the same orientation (η = 1)
that corresponds to experiment,4 and D12 ∼ 10−17CGSE, N = 1021 cm−3, one obtains the evaluation
q ' 6322 cm−1. This value agrees with the measurements of Ref. 4. The position of the fluorescence

FIG. 7. Frenkel EP dispersion for real (solid line) and imaginary (dashed line) part of the wave number k calculated with
Eqs. (40) and (41), respectively, when qτs = 84. Other parameters are identical to those of the bottom of Fig. 5. k is in units
of c/(ω21n0). Circles show the position of the fluorescence spectrum of a nanofiber.



075314-15 B. D. Fainberg AIP Advances 8, 075314 (2018)

FIG. 8. Real part of the group refraction index ng for n0 = 1.5. Other parameters are identical to those of Figs. 5 and 7. Circle
shows the position of the fluorescence spectrum of a nanofiber. Parameter δ = τs(ω − ω21).

spectrum of a nanofiber that is in the range of ∼ 2.5 eV is shown as circles in Fig. 7. One can see that
it is located in the range where Imk ≈ 0, and it is out of the splitting range under discussion. That is
why the fluorescence was amplified well in experiment.4

Fig. 8 shows the real part of the group refraction index ng(ω) = n(ω) + ωdn(ω)/dω as a function
of frequency where n(ω) = (c/ω)k(ω) is the phase refraction index. The curve of Fig. 8 agrees with
the experimental curve of Fig. 2a of Ref. 4. Both curves give the same value Reng ≈ 7 at the position
of the fluorescence spectrum of a nanofiber (∼ 2.5 eV).

V. CONCLUSION

In this work we have developed a mean-field electron-vibrational theory of Frenkel EPs in organic
dye structures. Our consideration is based on the model of the interaction of strong shaped laser pulse
with organic molecules, Refs. 6–8, extended to the dipole-dipole intermolecular interactions in the
condensed matter. We show that such a generalization can describe both a red shift of the resonance
frequency of isolated molecules, according to the CMLL mechanism,9 and the wide variations of
their spectra related to the aggregation of molecules into J- or H-aggregates. In particular case of
weak radiation we recover the CES approximation.10,29,30 We show that the experimental absorption
spectra of H-aggregates (pinacyanol in aqueous solution at 20

◦

C and in aqueous solution with 7.5%
v/v ethanol at room temperature) may be correctly described only if one takes both mechanisms
into account. Our theory contains experimentally measured quantities that makes it closely related
to experiment, and provides a possibility of generalization to a nonlinear regime. Indeed, the CMLL
mechanism allows the most direct extension of approach, Refs. 6–8, to dipole-dipole intermolecular
interactions in the condensed matter including the absence of vibrational equilibrium in electronic
states (see Eq. (10)). In the case of wide variations of the molecular spectra related to the aggregation
of molecules into J- or H-aggregates, extension to stronger radiation was made for the fast vibrational
relaxation limit for J-aggregates (see Eq. (28) and Fig. 3). In essense, Eq. (28) generalizes the CES
approximation to a nonlinear regime.

We have applied the theory to experiment on fraction of a millimeter propagation of Frenkel EPs
in photoexcited organic nanofibers made of thiacyanine dye.4 A good agreement between theory and
experiment is obtained.

The theory can be also applied to plexcitonics38 and the problems related to optics of exciton-
plasmon nanomaterials.39,40
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APPENDIX

In the case of the Gaussian modulation of the electronic transition by the vibrations the absorption
lineshape is given by11,12,24,41

Fa(ω)=
1
π

Re
∫ ∞

0
exp[i(ω − ω21)t + g(t)]dt (A1)

where

g(t)=−
∫ t

0
dt ′(t − t ′)K(t ′) (A2)

is the logarithm of the characteristic function of the spectrum of single-photon absorption after
substraction of a term which is linear with respect to t and determines the first moment of the
spectrum, K(t) is the correlation function. Eq. (A1) can be used in general case when the “slow
modulation” limit is not realized. Then the monomer spectrum is given by

Wa(ω)=
1
π

∫ ∞
0

exp[i(ω − ω21)t + g(t)]dt (A3)

For the exponential correlation function Ks(t) = σ2s exp(−|t|/τs), we get

gs(t)=−σ2sτ
2
s [exp(−t/τs) +

t
τs
− 1] (A4)

that leads to Eq. (26) of Section II B.
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