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1 Introduction

Recent investigations with tuning lasers and lasers for ultrashort (up to a
few femtoseconds) light pulses have led to the revision of simple models for
the light-condensed matter interaction.

The first interpretations of the corresponding experiments with dye solu-
tions were based on a consideration of a model of two-level (or three-level)
atoms characterized by certain constants of the energy 77 and phase T re-
laxation and also by the spread of the transition frequencies modeling the
inhomogeneous broadening in the system [1-4]. Phenomenological terms tak-
ing into account the processes of cross-relaxation T5 [1, 5-7] or vibrational
relaxation [8] were also introduced, with the goal of constructing a more re-
alistic model in the case of condensed media. In these studies by comparing
the experimental data to the theory, times T3 and 13 were estimated to be
of the order of hundred femtoseconds.

However, such extremely fast relaxation phenomena, whose duration is of
the order of the correlation time 7. of the thermal reservoir, can no longer be
analyzed by the conventional theory based on the relaxation time description.

In this ultrashort time region one should take into account effects of memory



in the relaxation (non-Markovian effects) [9, 10].

Another reason for the revision of the simple models is the impossibility
to divide a relaxation between closed states into an energetic and a phase
one [11-13].

At the beginning of the eighties a non-Markovian theory of the tran-
sient and steady-state resonance four-photon spectroscopy (RFPS) began to
develop in this respect [14-21]. A non-Markovian character of the optical
transition broadening can be illustrated by a simple example of an oscillator
whose natural frequency w’ is randomly modulated [9].

The resonance absorption spectrum of such an oscillator at the frequency

w is given by

Flowo — wp) = % [ explitw — woyl

where wy is the time average of &/,

£ = {expli [ (¢) )

!

is the relaxation function of oscillator, wy (1) = w (¢) — wo.
The resonance intensity distribution F'(w — wg) is an observed quantity

and it is broadened around the center wy by the random modulation wy (1).



Consider the shape of this resonance spectrum and its relation to the nature
of the modulation. Let us suppose that the frequency modulation is charac-
terized by a probability distribution P (wq). If we suppose that P (wy) has
only one peak at w; = 0, the stochastic process wy (t) can be described in
terms of two characteristic parameters.

(1) Amplitude of modulation a: a* = [wiP (w)dw; = (w]).

(2) Correlation time of modulation, ..

The correlation function of modulation is defined by

S(r) = @ ()@ (t+7)).

Then the correlation time 7. is given by 7. = [;7 5 (¢) dt, i.e. {wy (t)wy (t + 7)) ~
0 when 7 > 7.; 7. thus measures the speed of modulation.

It can be demonstrated [9] that two typical situations are distinguished
by the relative magnitude of a and 7.:

(a) Slow modulation.

a-7. > 1, (1)

(b) Fast modulation.

a- -1, < 1. (2)

In case (a) 7. is large compared to 1/a. Then it turns out that F'(w — wy) =



P (w —wp) . Thus the intensity distribution reflects directly the distribution
of the modulation. The width of the intensity distribution curve will be
about a and the response is dynamic and coherent. This case corresponds
to an inhomogeneous broadening of the transition under consideration. Thus
one can say that the inhomogeneous broadening of the optical transition
corresponds to an extreme case of the non-Markovian relaxation, when the
"memory” in a system is completely conserved.

In case (b), 7. becomes small and any modulation w; hardly lasts for any
significant time (~ 1/w;), so that the fluctuation is smoothed out and the
resonance line becomes sharp around the center. In this limit a - 7. — 0 the

2. 7.. This case

line have a Lorentzian form in which the half-width ¥ = «
corresponds to a homogeneous broadening of an optical transition when the
relaxation is Markovian with a very short "memory” determined by ..

As will be seen in later sections, the broadening of electronic transitions in
dye solutions used in four-photon experiments corresponds to the case of slow
modulation (a) (or the intermediate one) rather than to case (b). Therefore,
we need to use a non-Markovian theory for the description of corresponding

experiments.

The literature on non-Markovian effects in nonlinear spectroscopy is cur-



rently quite voluminous, but the framework of the review article does not
enable us to cover all the issues concerning the subject. Therefore we will
confine the review mainly to our recent theoretical results related to an ex-
periment. We do not discuss such interesting problems as the non-Markovian
theory of the Resonance Raman Scattering [22-29], spectroscopy of dimers
[30, 31], etc. At present, there are a number of review articles [32-34] and a
monograph [31] which cover questions which are not discussed here.

A large contribution to the theory of four-photon spectroscopy has been
made by Mukamel and coauthors (see [31] and references here). Experimen-
tally, the RFPS has been developed in the works of Yajima’s, Wiersma’s,
Shank’s and Fleming’s groups, Vohringer and Scherer and others (see refer-
ences here).

The outline of this chapter is as follows. In Sec.2 we describe the Hamil-
tonian of a chromofore molecule in a solvent and basic methods of RFPS.
In Sec.3 we present the corresponding theory. In Sec.4 we consider non-
Markovian relaxation effects in transient RFPS by the use of stochastic mod-
els. A non-Markovian theory of steady-state RFPS is presented in Sec.5.
Sec.6 is devoted to the real time four-photon spectroscopy of superconduc-

tors. In Sec.7 we present a theory for transient RFPS with pulses long com-



pared with the electronic dephasing and its generalization for strong light
fields not satisfying the four-photon approximation. In Sec.8 we describe our
experimental results obtained by the heterodyne optical Kerr effect (HOKE)
spectroscopy on ultrafast solvation dynamics study of rhodamine 800 ( R800)
and DTTC B in water and D;0. In Sec.9 we shall discuss a prospect of spec-
troscopy with pulses longer than the reciprocal bandwidth of the absorption
spectrum: nonlinear solvation study. In the Appendix we carry out auxiliary

calculations.

2 Hamiltonian of chromofore molecule in sol-
vent and basic methods of the resonance

four-photon spectroscopy

Let us consider a molecule with two electronic states n = 1 and 2 in a solvent

described by the Hamiltonian

Hy =Y [n) [E, — ihy, + Wa(Q)] n] (3)

where Fy > Ky, F, and 27, are the energy and the inverse lifetime of state
n, W,(Q) is the adiabatic Hamiltonian of reservoir R (the vibrational sub-
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systems of a molecule and a solvent interacting with the two-level electron
system under consideration in state n).

The molecule is affected by electromagnetic radiation of three beams

E(r,t) = E*(r,t) + E-(r,1) = % S EL (1) expli(knr — wut)] + cc.} (4)

m=1
Since we are interested in both the intramolecular and the solvent-solute in-
termolecular relaxation, we will single out the solvent contribution to W,(Q):
W (Q) = Wonr + W where W, is the sum of the Hamiltonian governing
the nuclear degrees of freedom of the solvent in the absence of the solute,
and the part which describes interactions between the solute and the nuclear
degrees of freedom of the solvent; W, is the Hamiltonian representing the
nuclear degrees of freedom of the solute molecule.

A signal in any method of nonlinear spectroscopy can be expressed by
the nonlinear polarization PN, We will consider both the steady-state and
the transient methods of the RFPS.

The steady-state RFPS methods [35, 1, 36, 5, 2, 37, 3, 8, 6, 21, 38-50] are
based on an analysis of the frequency dependence of the cubic polarization
P®) of the medium studied at the signal frequency w, = ! +w!" —w,,. The

case w/, = w/! = w; = const, w,, = wy = var corresponds to spectroscopy

11



based on a resonance mixing of the Rayleigh type [35, 1, 36, 5, 21, 39-30].
The optical scheme describing the principles of the method is shown in Fig.1.

Two laser beams with different frequencies w; # w; and wave vectors k;

K3=2K,-K
q;Kl -Kz

Figure 1: The scheme describing the principles of spectroscopy based on a

resonance mixing of the Rayleigh type.

and k; produce a nonstationary intensity distribution in the medium under
investigation. This intensity exhibits a wavelike modulation with a grating
vector q = k; —k; and a frequency Q2 = w;—w,. The wavelike modulated light
intensity changes the optical properties of the material in the interference
region, resulting in moving grating structure.

If this wavelike modulation is slow in comparison with the relaxation
time, 7. of the optical properties of a material (7. < Q7!) the latters

follow the intensity change and the grating amplitude does not decrease. If



Q) > 77|, the optical properties of a material do not follow the intensity
modulation, and the grating structure becomes less contrast, and therefore
the grating amplitude decreases. The grating effectiveness measured by the
self-diffraction of waves w; drops for this case. In the moving grating method
the relaxation velocity of the optical properties of a material is compared with
the motion velocity of the grating (which is proportional to the frequency
detuning).

When applied to a spectroscopy of inhomogeneously broadened transi-
tions, the self-diffraction signal will change like ~ Q=2 for Ty ' > Q] > T}
and like ~ Q~* for |Q| > T, ', Ty [35].

Now let us consider transient methods of RFPS. In a three-pulse time-
dependent four-wave-mixing experiment (Fig.2a) [51-64], pump pulses prop-
agate in the directions k; and k, and induce grating in a medium. The
dependence of the grating efficiency on the delay time 7 between pulses k;
and kj is recorded using the scattering of the probing pulse ks , delayed by a
fixed time T with respect to pulse ky. The resonance transient grating spec-
troscopy (see Fig.2b) is the particular case of a three-pulse time-dependent
four-wave-mixing when 7 = 0 and 7T is variable [65-67]. For ks = ky (7' = 0)

we obtain the spatial parametric effect [4, 68-70] and the two pulse photon
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Figure 2: Geometry for three-pulse time-delayed four-wave-mixing experi-

ments: (a) grating on the basis of a polarization (r variable, T' = const); (b)

population grating (r =0, T variable).



echo case [71-74, 59, 75]. In these experiments, the signal power [ in the
direction ky; = ks £+ (k2 — ky) at time ¢, is proportional to the square of
the modulus of the corresponding positive frequency component of the cubic
polarization P®+: [(t) ~ | PO (r 1) |2. In pulsed experiments, the depen-
dence of the signal energy J; is usually measured on the delay time of the

probe pulse relative to the pump ones:

JN/ (e, 1) dt (5)

When the stimulated photon echo is time gated, for instance, by mixing
the echo signal with an ultrashort gating pulse in a nonlinear crystal [76, 77],
the signal is proportional to the echo profile at time ¢, of the arrival of the
gating pulse: Jygeq(ty, T, 7) ~ | PSPE(t T,7) |2

Other methods of transient RFPS are: the transmission pump-probe ex-
periment [78-80], the heterodyne optical Kerr effect (HOKE) spectroscopy
[81-84], and time resolved hole-burning experiments [78, 85-90].

In the transmission "pump-probe” experiment [78-80], a second pulse
(whose duration is the same as the pump pulse) probes the sample transmis-

sion AT at a delay 7. This dependence AT(7) is given by [91]

AT(7) ~ —wlm / Tt — )PVt (6)



where &, and PVL+(t) are the amplitudes of the positive frequency compo-
nent of the probe field and the nonlinear polarization, respectively.

In resonance HOKE spectroscopy [81, 83, 84], a linearly polarized pump
pulse at frequency w induces anisotropy in an isotropic sample. After the
passage of the pump pulse through the sample, a linearly polarized probe
pulse at /4 rad from the pump field polarization, is incident on the sample.
A polarization analyzer is placed after the sample oriented at approximately
7/2 (but not exactly) with respect to the probe pulse polarization. A small
portion of the probe pulse that is not related to the induced anisotropy plays
the role of a local oscillator (LO) with a controlled magnitude and phase.

The HOKE signal can be written in the form:
Jupr ~ ~Im [~ Eolt = T)expliv PV (1)l (7)

where v is the phase of the LO. If ¢» = 0, the resonance HOKEFE spectroscopy
provides information similar to that of the transmission pump-probe spec-
troscopy (see Eq.(6)). If v = 7/2, the resonance HOKE spectroscopy pro-
vides information about the real part of the nonlinear susceptibility (the
change in the index of refraction).

In the time-resolved hole-burning experiment [78, 85, 86, 92-97], the sam-

16



ple is excited with a ~ 100 fs pump pulse, and the absorption spectrum is
measured with a 10 fs probe pulse that is delayed relative to the pump pulse
by a variable 7. In another variant of such an experiment, a delayed pump
pulse, broadened up to a continuum, can play the role of a probe pulse. The

difference in the absorption spectrum at w’ 4+ w is determined by [91, 86]
Aa(!) ~ = Im[PYH) [y ()] )
where
PVE(W) = /_O:o PNEF () exp(iw't)dt (9)
is the Fourier transform of the nonlinear polarization, and

(W) = /_ O:O E,.(1 — ) exp(iw't)dt (10)

is the Fourier transform of the probe field amplitude.

3 Calculation of nonlinear polarization

The electromagnetic field (4) induces an optical polarization in the medium
P(r,t) which can be expanded in powers of E(r, ) [98]. For cubic polarization

of the system under investigation, we obtain:

PO (r,t) = POY(r, 1)+ c.c. = NLYTra(Diap (1) + c.c.Vor (11)
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where N is the density of particles in the system; L is the Lorentz correction
factor of the local field; D is the dipole moment operator of a solute molecule;
(...)or denotes averaging over the different orientations of solute molecules;
p®) is the density matrix of the system calculated in the third approximation
with respect to E(r, ).

The equation for the density matrix of the system can be written in the

form

p=—i(Lo+ Li)p (12)

where Lo and L; are the Liouville operators defined by the relationships
Lop = h™'[Hy,p] and Lip = h~'[=D - E(r,t),p]. Using the interaction
representation (int) by means of the transformation p' = exp(iLgt)p and
L™ = exp(iLot) Ly exp(—iLot), solving the resultant equations by perturba-
tion theory with respect to Li"* in the third order, and using the resonance
approximation, we find p(®). The diagram representation of p®) can be found
in monographs[98, 31].

The a-th component (a,b,c,d = x,y, z) of the amplitude of the positive
frequency component of the cubic polarization 7753)+(t) describing the gen-

eration of a signal with a wave vector k; = k,,» + k,,» — k,,, and a frequency

18



ws (PO (e, 1) = POF(1)expli(kor — w,t)]) is given by the formula [99]

X Z Z//o /drldrgdrgexp{—[i(wgl — ws) +v]|m

mm'm’ bed
—[i(wm — wnr) + Tfl]Tz — yrs Hexpli(war — wim ) 73] Flaped(T1, T2, T3)
Xgm/c(t —T1 — Tg)gjnd(t — 71 — Tg — Tg)

+exp|—i(war — Wi ) T3] Fagped(T1, T2, T3)

Xgm/c(t — 71 — Tg — Tg)gjnd(t —T1 — TQ)}gm//b(t — Tl) (13)

where Ty = (2v2)™' = (27)7! is the lifetime of the excited state 2, wy =
wer — (We — Wh)/h is the frequency of the Franck-Condon transition 1 — 2
(see the definition of W5 and Wi in Sec.2), wy = (E2— Ey)/h is the frequency
of purely electronic transition with corrections from the electronic degrees of
freedom of the solvent [99, 86]. The summation in Eq.(13) is carried out
over all fields that satisfy the condition k,; = k,,» + k,,,» — k,,. The functions
FY 20ped(T1, T2, 73) are sums of four-time correlations functions corresponding

to the four photon character of light-matter interaction:

Flabcd(Tlv T2, 7—3) = [(dcab(ov T3, T1 + 7+ T3, T2 + 7—3)
‘I’[(dbac(ov Ty + T3, T1 + 7+ 73, 7—3)7 (14)
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Tk
F2abcd(7—17 T2, 7—3) = [Xcdba(()? T3, T2 + T3, T1 + 7+ 7—3)

+ K40, 71 + 72 + 73,70 4 73, T3), (15)
where

Kapea(0, 1,15, t3) = ((DSyeap(iWaty /h) Dy, exp(iWh(t, — t1) /)

x DSyexp(iWa(ts — t2)/h) Dy eap(—iWits/h)))or — (16)

are the tensor generalizations of the four-time correlation functions K'(0,%1, ¢, 3)
which were introduced in four-photon spectroscopy by Mukamel [16, 100].
Here (...) = Trg(...pr) denotes the operation of taking a trace over the
reservoir variables, pp = exp[—W1/(ET)]/Trrexp[—W1/(kT)] is the density
matrix of the reservoir in the state 1, Wy = Wy — (W5 — Wy) is the adia-
batic Hamiltonian in the excited state without the reservoir addition to the
frequency of the Franck-Condon transition (the term (W, — W7)).

It follows from Eqs. (13),(14),(15), (16) that the nuclear response of any
four-photon spectroscopy signal, generally speaking, depends on the polar-
izations of the excited beams because of the tensor character of the values
Fi 2apeqd and Kabcd(o,thtz,t:a)-

We can represent the latter quantity as a product of the Condon (F'C)

20



and non-Condon (NC') contributions [101, 99]:
[(abcd(ovtlvt%t?)) = [(FO(Ovtlvt%tB) ' X7i\ggl(07t17t27t3)‘ (17)

The Condon factors K¥9(0,¢,%,,¢3) do not depend on the polarization
states of exciting beams, however the non-Condon ones KN (0,#,,,%3) de-
pend on their polarizations. The origin of the non-Condon terms stems
from the dependence of the dipole moment of the electronic transition on
the nuclear coordinates D12(Q). Such a dependence is explained by the
Herzberg-Teller (HT) effect i.e., mixing different electronic molecular states
by nuclear motions. When Djs does not depend on the nuclear coordi-
nates (the Condon approximation), the non-Condon terms are constants:
KN%(0,t1,t,t3) = (D%, D5, DS, D4, ~ D where D = |Dys.

Let us introduce the quantity u = Wy — W) which determines the strength
of the bonding of the vibrational subsystem with the electronic transition,
and characterizes the Condon perturbations of the electronic transition (un-
like non-Condon perturbations which are determined by the dependence
D12(Q)). Thus, if the value u is a Gaussian one (intermolecular nonspe-
cific interactions, linear electronic-vibrational coupling etc.), and also in the

case of a weak electronic-vibrational coupling, irrespective of the nature of

21



u, the Condon contribution can be represented in the form [100, 39, 31]:

KO0, 1,12, t3) = explg(ts —ta) +9(1) + gt — 1) = g(t2) = glts—t1) +g(ts)]
(13)

where
o) = | A — U)K (1) (19)
is the logarithm of the characteristic function of the spectrum of single-photon
absorption after substraction of a term which is linear with respect to ¢ and
determines the first moment of the spectrum, K (¢) = (u(0)u(¢)) — (u)? is the

correlation function of the value wu.

4 Stochastic models in transient RFPS

4.1 Non-Markovian relaxation effects in two-pulse RFPS
with Gaussian random modulation of optical tran-
sition frequency

Let us consider the spatial parametric effect (SPE)[4, 68]. The SPE consists
in the following. When the medium under study is acted upon by two short
light pulses of frequency w with wave vectors k; and k, separated by a time

22



interval t5 (see Eq.(4) for m = 1,2 and w; = wy = w), signals with wave
vectors k3 = 2ky; — ky and ky = 2k; — k, are generated in this medium. The
temporal characteristics of these signals provide information on the phase
relaxation time of the optical transition studied.

The problem of non-Markovian relaxation in the SPE was first discussed
independently in Refs. [14, 15]. Aihara[l4] examined the transient SPE
in the case of a system with a linear and quadratic electron-phonon bond,
and obtained numerical results illustrating a non-Markovian behavior. In
Ref.[17] (see also Ref.[18]) a stochastic model was used to derive simple an-
alytical relationships, which could serve as the basis for the spectroscopy of
non-Markovian relaxations based on SPE. The model interpolates in a contin-
uous way between the inhomogeneous broadening case and the homogeneous
broadening case.

The cubic polarization of the medium, corresponding to wave ks, is given
by Eq.(13) for m = 1 and m’ = m” = 2. If pulses k; and ky are well
separated in time, then only the first term in the curly brackets on the right
hand side of Eq.(13) (~ Fi) makes a contribution. Let us assume that ()
is a Gaussian-Markovian random process with correlation function K(t) =
h*a? exp(—[t|/7.). Such a model of relaxation perturbation is highly realistic.

23



It corresponds to solvated systems in the case of the Debye spectrum of
dielectric losses [102], concentration-dependent dephasing in mixed molecular
crystals [103], Doppler-broadened lines in gases in weak collisions [104], and
phase modulation by phonons in crystals [25].

The quantity F} in the case of the Gaussian-Markovian random modula-
tion of an electronic transition has been calculated in Refs.[17, 18]. In the
Condon approximation, without taking into account tensor properties, the

quantities I  have the following form:

T T K K
Fialrimm) = Drexp{-rlexp(—2) + L pesp(-2) + 2
T T K
ﬂFexp(—T—z)(eXp(—T—l) - 1)(6Xp(—T—3) — D]}, (20)

where p = ar..

Considering the limit of short pulses and introducing the pulse areas
©,, = DA™ [ &, (t")dl', we obtain the signal strength I3(t) ~ |P®)*|? by
means of Eqs.(13) and (20):

[ [ [ t—1
I(t) = Bexp{—T;'t—2p*[—+2 exp(——Q)—eXp(——)—l—Z exp(— 2

Te Te Te Te

where t; = 0 is the moment of the appearance of the first pulse ky, ¢t > t,

- the delay time of the pulse ky with respect ky, B = AN?050%, and A is
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a proportionality factor. In the case of intense light fields, the quantity B
should be replaced by B’ = 16 AN?sin*(0,/2)sin?*(0,) [21].

In a more general case when u(t) is a Gaussian random process with an
arbitrary correlation function K(¢), one can find K(¢) on the basis of the

function I3(¢) [21]:

d? DY -
CnI(1) = MK ()~ 2K (1~ 1) (22)

When ¢y > 7., the second term on the right hand side of Eq.(22) makes
the primary contribution.
It follows directly from Eq.(21) that the maximum of signal I3(¢) corre-

sponds to instant [17]

s = 7o [P 2exp(2) — 1)/ + T7 2], (23)

C

The energy dependence of signal ks is equal to

oo 1 t
Jo(ty) = /t I(t)dt = 1.B exp{—T 'ty — 2p2[7_—2 + Qexp(——z) — 3]}

by oo et gy !
) {2p%[2 — exp(— D)} T F 2y [T 4 297, 27 (2 — exp(— )], (24)

Te Te

where (b, z) is an incomplete gamma function [105].

At the limit of fast modulation, which corresponds to a homogeneous
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broadening (p < 1; t2,t — tg > 7o),

I5(t) = Bexp[—(Ty" + 27aa)t],

tmaac 27ad t2 t2
=In — R~
Te Yad —I' T1 /2 Tc Tc

Js(t2) exp[—(T7 " 4 27aa)ta],

T+ 2
where v,4 = ap is the contribution of elastic (adiabatic) processes to the
phase relaxation.

At the limit of slow modulation, corresponding to inhomogeneous broad-
ening (p > 1; to,t — ty K 72),

I3(t) = Bexp(—17"t) exp[—a*(t — 2t2)?],
Js(ts) = (B\/E/(Za))exp(% — 2T 'y)

<[1+ ®(at, - T21—a)].

As can readily be seen, a photon echo takes place in the latter case [71].

Fig.3 shows the signal I5(¢) and Jy(t3) in the case of intermediate modulation

Thus, as follows from the non-Markovian theory of SPE described in this
subsection, the methods of transient RFPS (together with the spectra of

single-photon absorption) make it possible to find the parameters of relax-
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Iz (rel.units)
Jg(rel.units)

Figure 3: Time response I3(t) (a) and pulse energy J,(¢,) for T7'7. < p = 1;
t — t; = 7.. The inset shows the instant of appearance of the maximum of
the signal [3(t) as a function of the delay time ¢, of the second pulse for
Tr'r. < p* [Eq. (23)]; the tangent 2¢,/7. corresponds to the case of photon

echo.



ation perturbation, i.e., the modulation amplitude a and correlation time 7.,
which, in the general case, determine the non-Markovian relaxation of the
system studied.

The model of the Gaussian-Markovian stochastic modulation for optical
dephasing has been used for the description of a non-Markovian relaxation
behavior in a number of two-pulse SPE experiments [72, 106, 59]. Fig.4
shows the result of the corresponding femtosecond experiment on resorufin in
dimethylsulfoxide (DMSO) by Wiersmaet al. [72]. The solid line is a fit based
on the Gaussian-Markovian stochastic modulation model for optical dephas-
ing. Wiersma et al. showed that optical dephasing of resorufin in DMSO
can be described by using a stochastic modulation model. With Gaussian-
Markovian statistics, both the femtosecond photon-echo experiment and the
steady-state absorption spectrum can be adequately simulated with the same
values for the stochastic parameters [72].

Saikan et al. [106] observed non-Markovian relaxation in photon echos of
iron-free myoglobin which was described by the Gaussian-Markovian stochas-

tic modulation model for optical dephasing by using Eq.(20).
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Figure 4: Photon-echo signal for resorufin dissolved in DMSO (dotted trace).
The solid line is a fit based on the Gaussian-Markovian stochastic modulation

model for dephasing, with parameters a =41 THz and 77! = 27 THz [72].



4.2 Transient four-photon spectroscopy of near or over-
lapping resonances in the presence of spectral ex-
change

In Subsec.4.1 we considered non-Markovian relaxation effects in two-pulse
RFPS with the Gaussian random modulation of the optical transition fre-
quency. In this case the four-time correlation functions describing a four-
photon light-matter interaction can be expressed in terms of the correlation
function K (t) (see Eqgs.(18) and (19)). Another example of random modu-
lation, which allows a detailed and general mathematical development, and
has important physical applications, is the Markovian modulation [9, 11].
Let us return to the oscillator whose natural frequency is randomly modu-
lated (see Sec.1). For the sake of simplicity we will assume that the oscillator
takes on any of two states @ and b. The resonance frequency in states a and b
will be wg &y, respectively [107]. In this model, the frequency stays at some
value, say w, for a certain time 7,, and changes suddenly to other value wy,
remains constant for time period 7, returns to w, and so on. The quantities
771 and 77! describe the phenomenon of spectral exchange in the system

a

which is related to a coupled damping of oscillators [9, 11-13, 107].
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The spectral exchange strongly influences the shape of an absorption
spectrum of such an oscillator [9, 11, 108]. Let us introduce the time 7. such
as 770 = 771+ 77!, Then in the limit 7. — 0 the spectrum will be a sharp
line at the equilibrium average of the two frequencies w, and w,. As 7. — oo
two sharp peaks will appear at w, and wy [9].

The model under consideration is interesting in relation to a spectroscopy
of near or overlapping resonances [107]. The question of RFPS methods
establishing the presence or absence of spectral exchange in a system, is of
rather great current interest. Actually, one can distinguish two mechanisms
of formation of spectra from superimposed lines. In the first mechanism the
different lines belong to noninteracting transitions (for example, in different
centers) and each transition decays independently of the others. In the second
mechanism relaxation of transitions with different frequencies is connected
with transfer of excitation between them, due to which relaxation of the
transitions occurs in a coupled way. This is the case of spectral exchange. If,
for example, one turns to doublets in the spectra of polyatomic molecules,
the mechanism of line broadening due to spectral exchange is determined by
isomeric transitions occurring in one center [109-111], while the mechanism

of formation of doublets connected with the presence of different spatially
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separated types of active centers, corresponds to the absence of spectral
exchange [112]. Thus, revealing the nature of the overlap of near lines is
of undoubted physical interest. To resolve the indicated question it has been
proposed to use two-pulse RFPS [107].

In the case being considered, the four-time correlation functions describ-
ing a four-photon light-matter interaction can not be expressed in terms of
the correlation function K (t) (see Eqs.(18) and (19)), as it was for the Gaus-
sian modulation. Therefore, for solving the problem we used Burshtein’s
theory of sudden modulation [11]. We have calculated the intensity of the

SPE signal in the limit of short pulses [107]:

I5(t) ~ B = B R (25)
where in the case of equal times 7, = 7, = 7 the quantity |Ry,|? can be
represented in the form

| Ric, [ = (46%) " exp[— (T + 275 U RE(12) sin® (st + o(12)), (26)

R(ty) = p{p? + 7571 4 215w sin (2kty) — 757t cos (2kt5)] /2,
sin (ty) = R™ (o) [r52 — p? cos (2kt2)], (27)
cosp (ty) = —R™' (ty) [ery " + p? sin (2kty)], & = (/,L2 — 7'0_2) i :
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Consider, for the sake of comparison, two noninteracting resonances, the
frequency difference of which is 2A, decaying with the constant 77 '/2 (sys-

tem without spectral exchange - wse). In this situation
L%(t) ~ exp(—T7 ') sin?[At + (7/2 — 2At,)]. (28)

Eqs.(26),(27) for u > 75" and Eq.(28) describe the beats of the intensity
of the signal ks, which can be used to reveal the hidden structure of single-
photon spectra. This aspect of the problem has been well studied in photon
echo spectroscopy [113]. Further, from a comparison of Eqs.(26),(27) and
Eq.(28) it is seen directly that they are characterized by different dependences
on ty of the amplitude and phase of the corresponding signals. This can be
used to reveal the mechanism responsible for the overlap of near lines [107].
As a matter of fact, the zeroes of intensity of the signal ks are realized when
Kt + @(t2) = nw for the case of the presence of spectral exchange, and when
At +m/2 —2Aly = nw in its absence (n is an integer). Let, for example, the
delay t3 be chosen in such a way that I53(¢2) = [3*°(t2) = 0 for ¢t = 5. Denote
by " the moment of time of the appearance of the next zero of intensity.

Then it is not difficult to show that in a system with spectral exchange

" 1
— =1+ 7/ arccos(——), 29
- = 1 anccos(———) (29)
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while in the absence of spectral exchange is always t” _/t; = 3. When ury >
1 (the case of slow modulation), arccos(—1/(umg)) — 7/2 and "/t — 3,
while for urg ~ 1 the ratio ¢"/t; # 3. For example, if pury = V2, then
"ty = 2%. Thus, the nonstationary behavior of the SPE signal allows
distinguishing situations corresponding to the presence or absence of spectral
exchange in the system investigated.

It is worth noting that a manifestation of spectral exchange by a phase
shift between components is the charactestic feature of four-photon beats
spectroscopy. The proposed method of the establishment of the fact of the
presence of spectral exchange has been used in Ref.[114] devoted to transient
spectroscopy of coherent anti-Stokes Raman scattering (CARS) of thulium
(Tm) atoms in a buffer gas. In this experiment, a slowing of Doppler de-
phasing and a spectral exchange effect have been detected for the first time
in optical-range atomic spectroscopy. Ganikhalov et al. [114] observed the
quantum beats stemmed from the hyperfine splitting of the 415/, and 47,
states of the thulium atoms. They found 72. /71. = 2.6 £ 0.1 # 3 for

thulium in xenon (see Fig. 5), where 717 are the delay times which deter-

mine the positions of the first and second minima. Therefore, authors [114]

concluded that they were dealing with a manifestation of spectral exchange.
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Figure 5: Temporal response at a xenon pressure of 825 torr. Shown here are

the delay times 7.2, which determine the positions of the first and second

minima of beats of the hyperfine-structure components, and the delay time

371, , which determines the position of the second minimum of the beats in

the absence of spectral exchange [114].



An examination of the non-Markovian effects on the relaxation processes

in the excited levels between which beating occurs has been also made in

Ref.[115].

4.3 Non-Markovian relaxation effects in three-pulse

RFPS

Let us consider three-pulse time-dependent four-wave-mixing experiments
(Fig.2a) [51-64]. A stochastic theory of these experiments for Gaussian ran-
dom modulation of a frequency of an optical transition has been developed in
Ref.[116]. Let us consider the signal corresponding to wave k, = ks +ky —k;
in the limit of short pulses. Then using Eqs.(13),(14),(17),(18) and (19),
one can show that the correlation function K'(t) is obtained from the time

dependence of the signal power [(t) [116]:

j—; InI(t) = 26Kt —T —7)+[K(t—7)— K@B)]}.  (30)

When T > 7., the first term on the right-hand side of Eq.(30) makes the
main contribution.
To carry out further calculations, we need to specify the form of the

correlation function K'(t). We assumed that u(?) is a Gaussian-Markovian
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random process [116]. Then using Eq.(20), one can show that the maximum

of signal [,(¢) occurs at the instant time [116]

boee = 7 Infexp( )1 + exp(—)] — 1. (31)

7 T
One can see that for 7,17 < 7. t,0e = T + 27, 1. e. the stimulated photon
echo [51] is realized in this case.

Three pulse stimulated photon echo experiments [62-64] showed that the
echo peak shift, as a function of a delay between the second and the third
pulses, could give accurate information about solvation dynamics. This as-
pect of the problem is covered in excellent review [34].

The energy dependence of signal k; is the following [116, 117]:

Jo(1) ~ | F(7)* exp(q)g™ 2 4(2p*, q), (32)

where
q = 2p*{1 4+ exp(=T/7.)[1l — exp(—7/7.)]}. (33)

Here f(7) = exp[g(7)] is the characteristic function of the resonance absorp-
tion spectrum F'(w—wsqp) and is expressed by f(7) = [0 F (&) exp(iw'T)dw,
where wy; is the frequency of the corresponding transition 1 — 2. It is well-

known that the characteristic function is the relaxation function that de-
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scribes the relaxation of the response of a system after removal of the outer
disturbance [118, 9].

Interesting aspects of the influence of non-Markovian effects in a three-
pulse time-dependent four-wave-mixing experiment have been noted by Lavoine
and Villaeys [119]. They showed that the energy of the diffracted light can

be expressed as a square of the relaxation function f(7):

Jo() ~ (), (34)

when the medium is excited by very short pulses. Their calculation does not
make assumptions about the analytical form of f(7). For this reason it is
possible to consider result (34) as general, and this result is interesting from
the point of view of learning about the dynamics of the bath.

Eqs.(32) and (33) enable to define more precisely the conditions for the
correctness of Eq.(34) [117]. One can see that Eqs.(32) and (33) reduce to
Eq.(34) only for T' > 7.. That is to say, the delay time T of the probe pulse
must be much larger than the correlation time.

Further, in the slow modulation limit (inhomogeneously broadened tran-
sition) the dependence J,(7) for T' >> 7. is the following (Ref.[116], Eq.(17)):

Js(7) ~ exp(—a?7?). In other words, in this case, formula (34) does not
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provide information about the correlation time of the interaction with the
surrounding bath. Such information can be obtained by the modification of
a three-pulse four-wave-mixing experiment to the population grating config-
uration [Fig.2b] (see [120] and Subsec.7.1 below).

Thus, formula (34) is of value in the case of fast or intermediate modula-

tion of the frequency of a transition under study when 7' > ..

5 Non-Markovian theory of steady-state RFPS

5.1 Introduction and the cubic susceptibility in the
case of Gaussian-Markovian random modulation
of an electronic transition

A non-Markovian theory of steady-state RFPS has been developed in Refs.[19,
16, 20, 21, 39, 121, 40-43]. In Ref.[19] only non-Markovian corrections to the
Markovian approximation were considered: a situation not appropriate to
the broad inhomogeneously broadened bands of dyes. In Refs.[16, 121] the
factorization approximation was proposed to calculate the cubic suscepti-

bility. This approximation enables us to express the cross section for an
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arbitrary multiphoton process in terms of ordinary single-photon line-shape
functions. It is exact in the Markovian limit, however it is not a good ap-
proximation in the extreme non-Markovian case corresponding to the broad
inhomogeneously broadened dye bands.

A stochastic theory of steady-state RFPS describing in a continuous fash-
ion, a transition from the Markovian limit (a homogeneously broadened op-
tical spectrum) to the extreme non-Markovian case (an inhomogeneously
broadened optical transition), has been developed in Refs.[20, 21]. Eq.(13)

for the steady-state case can be written as

1 *
73(53)+ = g Z Zx(g?é)cd(ws)gm”bgm’cgmd (35)

mm'm!’ bed

)

where Xz(J,E;)cd((‘US) is the cubic susceptibility,

XD @) = 2NL DDy D.DYYor Y. Qo o), (36)

77,]‘77,1‘/777‘//

the quantities Q(wp,,w! ,w!”) determine the frequency dependences of the
susceptibility. In the case of the Gaussian-Markovian random modulation

of an electronic transition, the quantities Q(wy,,w.,,wl ) have the following

form [20, 21]:
Wiy Wity Wiyt ) = —1T, Oo}ﬁ )
oot T o — )+ (I 4 )
X [Ry (2m) + (=1)" Ry (xr)], (37
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where z; = (Tl_ch/Q —|—p2) +imAwj; g = s,m,m/s Aws = wey — ws, Awyyr =
Wo1 — Wity AWy, = Wy, — wa1;
R.(x;))=nl®(n+1,z; +n+ 1;p*) [z; (x; + 1) ... (x; + n)]_l, O(n+1,2;,+n+1;p
is a confluent hypergeometric function [122].
Eq.(37) is convenient for calculations for the cases of fast (p < 1), inter-
mediate (p ~ 1) and also slow (p > 1) modulation [21]. In the last case its

convenience is confined to detunings
0] < (a®77 ) (38)

(Q = wy; — wsy) as applied to spectroscopy based on a resonance mixing of
the Rayleigh type [35, 1, 36, 5]. For detunings 7' < |Q| < (a?r7")'/3,
Q| ~ |Q|7/2. For larger detunings Q, the quantity @ can be calculated for
a more general and more realistic model of a complex molecule in a solution

than the model of Gaussian-Markovian modulation (see Subsec. 5.3).

5.2 Model for frequency modulation of electronic tran-
sition of complex molecule in solution

The effect of the vibrational subsystem of a molecule and a solvent on
the electronic transition can be represented as a modulation (a quantum
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modulation, in the general case) of the frequency of the electronic transi-
tion. According to Eqs.(18) and (19)), when the quantity w is Gaussian,
a four-photon light-matter interaction can be completely described by the
correlation function K(?) or the corresponding power spectrum ®(w) =
(27)7 [2° K (1) exp(—iwt)dt, expressing the Fourier transform of K (¢). It
is obvious that ®(w) has maxima in the regions corresponding to the opti-
cally active (OA) vibrations i.e., vibrations which change their equilibrium
positions when the electronic transition occurs (see Fig. 6). The molecu-
lar electronic transition model under consideration includes two groups of
OA vibrations [39, 40, 101, 43, 120]: low-frequency (LF) (hws < 2kT') and
high-frequency (HF) (hwy, > kT'). Accordingly, K(t) = K (t) + K;(t) and
g(t) = gn(t) 4+ gs(t). The corresponding contributions to the spectrum ®(w)

are ¢ (w) and Py (w): P(w) = Py(w)+ Pp(w). It follows from the relationship

B(—w0) = D(w) exp[—haw/(KT)] (30)

that the HF part of the spectrum @, (w) is localized mainly in the region,
corresponding to the frequency of the HFOA vibrations: 1000 — 1500cm ™.

As to the OALF vibrations, the value of K,(0) = [ &, (w)dw = h*oa,

is determined by the area included between the curve ®(w) and the w axis
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Figure 6: Approximate power spectrum of the vibrational perturbation for
the model of the electronic transition of a complex molecule in solution.
|| = o3s/02; = [22, «Bs(w)dw/ [Z2, ®s(w)dw. The methods of RFPS al-
low us to find such parameters of the distribution ®(w) as ¢. I' and ¢”,
determining the vibronic relaxation of the optical transition. In the spe-
cial case of shifted adiabatic potentials, o3, = ¥; S;coth[hcy/(2kT)]@%,

l¢"| = L Siyi/ 02,




(Fig.6). The quantity og, is the contribution from the OALF vibrations to
the second central moment of the absorption spectrum. In the situation con-
sidered, one can represent K(t) in the form of two contributions: a classical
Ksq(t) and a quantum K (t): Ks(t) = Ksu(t) + Kg(t) and, correspond-
ingly, ®s(w) = Pu(w) + Psy(w). The classical part (hw, < 2kT) corre-
sponds to intermolecular motions and also to the quadratic electron-phonon
interaction [123, 39, 40]. The quantum contribution arises from the LF in-
tramolecular vibrations [124, 43] and may stem from molecular librations,
for which hw, ~ 2kT. It follows from Eq.(39) that the spectrum @, (w) is
approximately symmetric relative to the frequency w = 0. An approximate
dependence ®(w) is shown in Fig. 6 for the model being considered in this
part. Using the properties of the Fourier transform, one can show that the
correlation time for K(¢) (which determines the characteristic decay time of

'~ maz(q,|q"|) and |¢"| ~ @, [43].

K(t)) is 75 where 7

We consider that the condition of “strong heat generation” [123, 21, 39,
40, 43] (025 > @?) is realized for the LF system {@,}. If the system {w;}
is purely classical, then the fulfillment of the latter condition is guaranteed
by the inequality hw, < 2kT. If the system {ws} is basically quantum,

then large shifts of the minima of the adiabatic potentials upon electronic
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excitation (}2;.5; > 1, where S; are the dimensionless parameters of the
shift) are necessary for fulfillment of this condition. Because of the inequality
02572 > 1 in the case under consideration, there is a large parameter in the
exponents in Eq.(18). This makes it possible to limit the expansion of these
exponents to power series at the extremum points 74 = 73 = 0 with an
accuracy up to the second order terms with respect to 7 and 73 [21, 116, 39,
40, 101, 43, 120, 99]:
KSFC(O,T&H + 7o+ T3, T2 + T3)

= exp|GT (71,72, 73)], (40)

~FC
[Xs *(07 T3, T2+ 73,71 + T2 + 7—3)

IX’SFC(O,TQ + 73,71 + T2 + T3, T3) . ‘
= exp[—i2m1Imgs(m2) + GT (11, 72, 73)](41)

-FC
Ky (0,7 + 12+ 73,72 + 73, 73)

where

02s

2

[ + 73 F 2mms(Rey(m) £ ilmabs(12))], (42)

G;F(Tlv T2, TB) - -

gs(m2) = dgs/dmy and s(m2) = K(72)/Ks(0) is the normalized correlation
function of the system {w,}. If the system {w;} is classical, then the term
—2Imgs(ma) = wg|l — 1¥s(m2)] describes the dynamical Stokes shift [120, 99]
where wg 1s the contribution of the LFOA vibrations to the Stokes shift

between steady-state absorption and luminescence spectra.
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5.3 Cubic susceptibility for detunings larger than re-
ciprocal correlation time
5.3.1 Classical system of LF motions

It follows from Eq.(13) that when detuning is |w,, —w/| > 7,1, we need to
consider only the behavior of ¢s(72) at small values of 7. Then for the classi-

cal system {w,} (hw, < 2kT') we obtain an approximate analytic expression,

using Eqs.(40), (41),(42) [39, 40]:
Q(wmvw;nvw;;) ~ —Zﬁo_lf(ﬁo/,bo), (43)

where o = [i(wn — ws) + 1I7']/ /02, B = [i(wm — ww) + T7']/d, ¢ =
—Re@/;s(—l-()), RefBy > 0; f(z) = ci(z)sinz — si(z)cos z, ci(z) and si(z) are
the integral cosine and sine, respectively [122]. An approximate analytic
expression (43) practically coincides with the rigorous dependence in the
region important for comparison with experiment [43].

We will now consider the dependence |Q(w2,wr,w1)| of Eq.(43) (Fig. 7).
If

2QP/(o2q/)? < 1, (44)
we find that |Q(ws,wi,wi)| o [Q71/% and reversal of the above inequality
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Figure 7: Dependence of |Q(ws,ws,w1)| (curve 1) on the detuning for the
LF system (s) compared with the experimental results of Ref.[5] (points) ob-
tained for rhodamine B in ethanol when ¢ = 182cm~!. The open circles do
not satisfy the condition |2|/¢’ > 1 and can not be compared with the theo-
retical curve 1. Curve 2 is the theoretical approximation to the experimental

data of Ref.[3) obtained using two fitting parameters 7 and T5.



vields |Q(w2,wy,wy)| o< |72, The inequality of Eq.(44) is also the condition
of validity of the solution of Subsec.5.1 [see Eq.(38)], but the latter is not
limited by the condition |w,, — w./|7. > 1. Therefore, in the range where
the solutions of Subsec.5.1 and this subsection are valid (this range is char-
acterized by the dependence |Q(wy,w,w;)| o |Q|7'/?), we can match the
solutions. The fact that the characteristic scale of variation of |Q (w2, wy, w1 )|

1 can be explained

with detuning w; — wy is considerably greater than 77
by the fact that, in addition to the Rayleigh scattering, a RFPS signal also
includes contributions from the processes of multiphonon Raman scattering
by the LF system (s) [21, 39, 40]. This follows directly from Eq.(37), which
represents expansions typical of the theory of multiphonon processes.
Experimental data [5] for a solution of rhodamine B in ethanol are in
satisfactory agreement with the present theory by using only one adjustable
parameter ¢ = (%q’025)1/3 = 182e¢m ™! (Fig.7), while the theoretical treatment
in Ref.[5] requires at least two fitting parameters Ty and 7] for the same

range'. Within the framework of the theory of this subsection, the ratio

Ty/T] ~ 1 reported in Ref.[5] (and also in the experiments on rthodamine 6G

In the case of rhodamine B one can take into account only the system (s) [39, 40].
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reported in Ref.[6]) becomes understandable. The value of ¢ just given and
an estimate of the half-width of the subband of rhodamine B in ethanol dw =
1070em ™" (/025 = 454em™") of Ref.[125] yield ¢ &~ 60cm™" (7, ~ 0.09psec).

The inclusion of the HFOA vibrations enables us to explain the increase,
observed in Ref.[5], of the frequency difference, for which |Q(w2,w,w;)|

(w1 — w2)™?, with increasing w; towards the blue wavelengths [39, 40].

5.3.2 Quantum system of LFOA vibrations

When detuning is large (|w,, — wys| > 7,71), one can also obtain an analytic

expression for the quantum system {ws} (hws ~ 2kT') [42, 43]:

Q(wa,wi,w1) ~ 05 B (i), (45)

where 32 = (Q—I—iZFO)U;SI/S, Re > 0; o35 = id*gs,(0)/dt? is the contribution
of the LFOA vibrations to the third central moment of the absorption spec-
trum; v = (17" — iﬂ)a;j/?’, 'y is the decay parameter of the zero-phonon
line [126]. Function f(z) has been determined in Subsec.5.3.1 and can be
represented in the following form for the case under consideration:

6—1

. -1
i) = —ioll? [y SN2 T
(61/0) 193 xQFO — Z(Q —|— 0'351'2)

= B_l[ci(él/o) sin(él/o) — Si(él/o) COS(BI/O)]. (46)

~2
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Eq.(45) is written for the special case 2I'g — 17" = 0 (see Refs. [42, 43] for
general case).

Let us discuss the dependence |Q(wz,w;,w;)|, determined by Eq.(45).
For detunings (|Q%/|os:)"/? < 1, |Q(wa,wi,wi)] o< [Q]7'/2 and reversal of
the above inequality yields |Q(wz,wy,w;)| o< |©2]72 for detunings © > 0. On
the basis of the form of the integrand in Eq.(46), one should expect a more
rapid decrease of the quantity |Q(wq,wsi,w;)| for positive detunings € > 0
in comparison with the case of negative detunings ) < 0 since resonances
arise when Q0 < 0, in particular when Q = —o3,2%. Such a behavior is
explained by the predominant contribution to the intensity of the w; signal
from the multiphonon Raman processes when the excitation frequency is ws
and scattering frequency is w; [43]. It is clear that for such processes the
corresponding probabilities will be larger for wy; > w;. One can note the
related mechanisms leading to the discussed behavior of |Q (w2, w1, w;)| when
wy —w; > 7,71 and to the appearance of a red wing of the multiphonon
Stokes Raman scattering [24].

The aforesaid conclusions are illustrated in Fig. 8.

Experimentally, the effect has been observed for ethanol solutions of mala-
chite green [44] (Fig. 9). Fig. 9 shows that the dependence |Q(w2,w;,w1)|
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Figure 8: Dependences of |Q(wz,ws,w1)| on the detuning for quantum LF
system (s) when Q > 0 (curve 1) and © < 0 (curve 2) for Toost® = 0.25,
Tl"lfj'_ll3 = 0.1, c; = (02,|¢")/® (Ref.[43]). |Q(w2,w1,w1)| is in arbitrary
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Figure 9: The experimental behavior of |x(*)(Q)] for a solution of malachite

green in ethanol (Ref.[44]). wi/(27c) = 1607Tcm™" for 1,2; wi/(27c) =

17361em™! for 3,4; Q < 0 for 1,3 and Q > 0 for 2,4. |x®¥(Q)| is in arbitrary

units.




is asymmetrical with respect to the sign of Q (the corresponding curves are
not parallel). The values of |Q (w2, w;,w;)| for @ < 0 are larger than the cor-
responding values of |Q(w2,wy,w;)| for & > 0. This circumstance indicates
the presence of a nonclassical system of HFOA vibrations.

The structure observed near |Q|/(27¢) & 230cm™" corresponds to the vi-
bration of 230cm ™! defining beats in the photoinduced changes in the trans-
mission of the malachite green solution [79, 80, 101].

For a quantitative estimate of the vibronic relaxation parameters, the
experimental curve 2 (Fig. 9) was compared with theoretical dependence for
the classical LFOA system [43] (Fig. 10a) and Eq.(45) (Fig. 10b). With
the assumption about the greatest contribution to the RFPS signal of the
LF system (for excitation in the region of the 0 — 0 transition with respect
to the OAHF vibration) the following estimates were obtained:q’ ~ 100cm ™
(75 &~ 0.05psec), if one considers the LF system classical, and |¢"| = 035/ 025 &
50cm™! (75, &~ 0.1psec), if one considers the LF system quantum. In these
estimates we used the value oy, &~ 500cm ™!, determined from the spectrum
of the single- photon absorption of malachite green in ethanol.

We note that the estimates obtained agree with the estimate 75 ~ 0.1psec,
which was obtained by a treatment within the framework of the theory
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system [43]-a and Eq.(45)-b with the part of the experimental curve 2 of Fig.9
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Ref.[101] of the results of direct femtosecond experiments [79, 80].

6 Four-photon spectroscopy of superconduc-

tors

Recently a number of papers have been published devoted to laser-induced
grating spectroscopy [45-49, 127, 50] and femtosecond ultrashort pulse spec-
troscopy [128-135] of metallic and high- temperature superconductors. A
new method has been proposed in Refs.[45, 47, 48] for the investigation of
electron-phonon interaction in metals and superconductors on the basis of
laser-induced moving gratings. Shuvalov et al. observed a well-defined dip in
the nonlinear spectroscopy signal of superconducting Y-Ba-Cu-O thin films
based on a biharmonic pumping technique [46, 49, 50] (see Sec.2). The upper
limit of the region of this dip corresponded to a value of 2A of the supercon-
ducting energy gap.

It has been proposed in Refs.[128, 129] to use an impulsive stimulated
light scattering [136-139] in order to study the energy gap in superconductors,

since in the usual Raman spectrum the superconducting energy gap is very
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weakly displayed. The corresponding method presents a real time optical
spectroscopy of superconducting-gap excitation, and therefore it is essentially
non-Markovian.

In Refs.[128, 129] the signal was been calculated in scheme corresponding
to an impulsive stimulated light scattering when ultrashort light pulses inter-
act with a superconducting film (see Fig.2b; below we use 7 instead of T'). In
this method the energy J; of the signal k, generated due to the four-photon
interaction of the type k; = ks + k; — k3, is measured. The beats have been
predicted in the dependence of the energy J; on the delay time 7 of the probe
pulse ks with respect to pump pulses k; and ky. The beats are due to oscilla-
tions of the charge density, and their doubled period determines the value of
the superconducting band 2A. The examination was performed on the basis
of the phenomenological BCS model [140] for an isotropic superconductor
with a large correlation length.

The signal electromagnetic wave with vector potential A; is generated by

a nonlinear current 5 (r, 1) in the medium, created by waves A;(j = 1,2, 3):

Aj(r,t) = (1/2)d(t) exp{—i[wl — k;(n + ib)r]} + c.c., (47)

where |k;| = k = w/c. One can obtain for the positive frequency component
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of the nonlinear current [128, 129]:

FOF (r, 1) = B (1) L' exp [iksr (n +b)] (48)

where
GO+ (t) = —% /OOO ds[l,(t —s)+ 1, (t+3)] [ (sA)as (¢)exp (—iwt)
(49)

determines the time dependence of the current, the factor L’ describes the

nonlocal character of the interaction [128, 129],
1 ! I£3
I (1) = 536 [ay (1) a5 (1)),

J(52) = Jo (sA) Yo () = Jy (sA) Vi (sA)

Jy (sA) and Y, (sA) are Bessel functions of the first and second kind, respec-
tively.

Solving the Maxwell equations for the signal wave with current (48) we
find the amplitude of the signal wave after the passage of the superconducting

sample of thickness [

47TLlj(3)+(t)[l exp(kl) — k' sinh(xl)], (50)

as(l,t) = —

CR

where kK = —kb 4+ 1kn.
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In the experiment it is convenient to record the energy Js of signal ki,
which is proportional to [ dt|as({,¢)|?, as a function of delay 7. In the case
of sufficiently short pump and probe pulses ¢, < A™', the time dependence

Js(7) is determined by the function f": Jy(7) ~ f*(7A). This function for

large values of the argument has the asymptotic representation

F(TA) ~ =[2/(7mTA)] cos(2TA).

The dependence f*(7A) is shown in Fig.11, in which the beats with fre-
quency 4A are clearly seen.

Using Eqgs.(49) and (50), one can obtain an estimate of the ratio of the
intensities of the signal and probe fields [128, 129]. For characteristic val-
ues of the parameters n ~ b ~ 3, [ ~ 107%cm, A/w ~ 1073, this ratio is
las(1,6)]*/]a4(t)]* ~ 1075 E, Ey, where E) 5 are the energy densities of the

pump pulses in terms of J/m?.
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7 Ultrafast spectroscopy with pulses longer
than reciprocal bandwidth of the absorp-

tion spectrum

The consideration of the transient RFPS up till now (see Sec.4) has been
based upon the assumption that exciting pulses are very short with respect to
all relaxation times in a system. In the case of inhomogeneously broadened
transitions, one must distinguish two dephasing times [98]: reversible (~
02_1/2) and irreversible 7" (1" > 02_1/2) where o, is the second central moment
of the absorption spectrum. Therefore, for the electronic spectra of complex
organic molecules in solutions the shortest relaxation time corresponds to the
reversible dephasing of the electronic transition which is about equal to the
reciprocal bandwidth of the absorption spectrum (~ 10fsec). At present,
pulses of such durations are used in ultrafast spectroscopy [55, 60, 61, 76, 75,
62, 63, 59], and they provide unique information concerning ultrafast intra-
and intermolecular processes.

However, there are situations when the pulses long compared with a re-

ciprocal bandwidth of the absorption spectrum have decisive advantages [81,

60



141, 142]. In the four-photon spectroscopy methods with pulses long com-
pared with reciprocal bandwidth of the solvent contribution to the absorption

/

spectrum ( ¢, > 05,77 where oy, is the solvent contribution to the central
second moment of the absorption spectrum) [65-67, 81, 120], pump pulses of
the frequency w create light-induced changes in the sample under investiga-
tion, which are measured with a time delayed probe pulse. Due to condition

/

l, > 02_51 2, pump pulses have a relatively narrow bandwidth and therefore
create a narrow hole in the initial thermal distribution with respect to a
generalized solvation coordinate in the ground electronic state (Fig. 12) and,
simultaneously, a narrow spike in the excited electronic state. These distri-
butions tend to the equilibrium point of the corresponding potentials over
time.

By varying the excitation frequency w, one can change the spike and the
hole position on the corresponding potential. The rates of the spike and
the hole movements depend on their position. The changes related to the
spike and the hole are measured at the same or another frequency w; by the
delayed probe pulse. Therefore, one can control relative contribution of the
ground state (a hole) and the excited state (a spike) to an observed signal.

/2

This property of the spectroscopy with pulses ¢, > 02_51 can be used for
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the nonlinear solvation study, when the breakdown of linear response for
solvation dynamics occurs [81, 141, 142] (see Sec.9).

A theoretical description of the interaction of pulses comparable with
relaxation times is an essentially more complex problem than that of pulses
short with respect to all relaxations in a system. However, it is possible to
develop a method of solving of such problems even in strong electromagnetic
field (without using four-photon approximation) for pulses long compared
with the electronic dephasing [143, 91]. This issue will be considered in
Subsec.7.2.

We will also present recent experimental results obtained by pulses long

compared with the electronic dephasing [83] (Sec.8).

7.1 Theory of transient RFPS with pulses long com-
pared with reversible electronic dephasing

We will use the general theory of Sec.3 for the model described in Subsec.5.2.
The transient nonlinear optical response strongly depends on the relations
between the intramolecular chromophore relaxation and solvation dynam-

ics. Numerous experiments [144-147, 65, 148, 62] show that the Franck-
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Condon molecular state achieved by an optical excitation, relaxes very fast
and the relaxed intramolecular spectrum forms within 0.1 ps. Therefore,
we shall consider that the intramolecular relaxation takes place within the
pump pulse duration. Such a picture corresponds to a rather universal dy-
namical behavior of large polar chromophores in polar solvents, which may
be represented by four well-separated time scales [62]: an intramolecular
vibrational component, and intermolecular relaxation which consists of an
ultrafast (~ 100fs),1 ~ 4ps, and 10 ~ 100ps decay components.

As to the interactions with the solvent, they satisfy the slow modulation
limit [99, 66, 120, 117, 86] in the spirit of Kubo’s theory of the stochastic
modulation [9] (see Sec.1):

| (51)

As a consequence of condition (51), times 7y and 73 (see Eq.(13)) become
fast [21, 39, 116, 40, 43]. Therefore, we can use Eqs.(40),(41),(42) and in-
tegrate the right-hand side of Eq.(13) with respect to them if the exciting

pulses are Gaussian of frequency w [120]:

En(t) = Egexp[—(8%)2)(t — )% + iwt,,]

64



with pulse duration of

t, = 1.665/6 > 05, (52)

As a result, Eq.(13) is strongly simplified [120, 99]:

’P Z Z/ dT?Xabcd w, )gm”b(t)gm’c(t - TQ)g:nd(t - T2)

mm'm!’ bed

(53)
where X((;Z)cd(wv t,7) is the cubic susceptibility. It can be represented as a sum
of products of "Condon” Xg)ca,@(wataﬁ) and a "non-Condon” Bgcha’@( T2)
parts

HTa,
X((lbcd (w, ZXFCa o\Ws 72) Boyeg F(T2) (54)

(3)

where indices o, ¢ of Yo and BHZT show that the corresponding values are
related to nonequilibrium processes in the absorption (&) or emission (¢) (for
more details see below). The “Condon” factors XE«?)Oa,@(wv t,73) depend on the
excitation frequency w,t and 7, but they do not depend on the polarization
states of exciting beams. The "non-Condon” terms B12*%(7,) do not depend
on w, but depend on 7, and the polarizations of the exciting beams. The
origin of the “non-Condon” terms Bgcha,w stems from the dependence of the

dipole moment of the electronic transition on the nuclear coordinates D15(Q)

that is explained by the Herzberg-Teller (HT) effect i.e., mixing different
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electronic molecular states by nuclear motions (see Sec.3).

We are interested mainly in non-Condon effects in solvation. Therefore,
we shall consider for simplicity high-frequency ”intramolecular” vibrations
as Condon ones.

We consider the translational and the rotational motions of liquid molecules
as nearly classical at room temperatures, since their characteristic frequencies
are smaller than the thermal energy kT

Here we do not consider the rotational motion of a solute molecule as a
whole. The corresponding times are in the range of several hundreds picosec-
onds for complex molecules and are not important for ultrafast investigations
(< 10 — 100ps). In the ultrafast range such effects are only important for
small molecules. One can take into account the influence of the rotational

motion of an impurity molecule on P®) by using approach [149].

7.1.1 Condon contributions to cubic susceptibility

At first, let us consider a case of one optically active (OA) intramolecular

(3)

vibration of frequency wp. Then the Condon contributions x ¢, ,(w,t, 72) to

the cubic susceptibility (54) can be written in the form [120]:
oot 72) = =(20°) PN LR cap( =72/ Th) (o(r2)) 7
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X Z 1,,(So/ sinh 0g)I;.(So/ sinh 8y )exp[—2Sy coth 8y + (n + k)]

n,k=—o00

XFe (W —nwy —we)w(za,,)  (55)

n,50

Here Sy 1s the dimensionless parameter of the shift of the equilibrium point for
the intramolecular vibration wy under electronic excitation, 6y = hwo/(2kT),
I,(x) is the modified Bessel function of first kind [122], F}  (w — nwo —
Wel) = (27‘[‘0‘25)_1/262}}?[—((4) — nwo — we — (us)/h)?/(2045)] is the equilibrium

absorption spectrum of a chromophore corresponding to a n-th member of a

progression with respect to the vibration wy, u, = Wy, — Wi,

w@):emﬂ—fﬂl+(%/¢?X/imp@%ﬁ]
0
is the error function of the complex argument [122],

Zoo = {16712 4 S(12)) = 13 + S(72)) + tyur + b + (1 + S(m))] +

0 = wa o (72) + wol Fh + nS(m2))}/ (20(12)) ' (56)

2

o(m2) = o95{1 — 52(7'2) + d

02s

[3+28(m) + 5%(m)]} (57)
is the time-dependent central second moment of the changes related to nonequi-
librium processes in the absorption and the emission spectra , at the active

pulse frequency w,

Wst

2

Wst

+ 8w — (wa £ )] (58)

Wap(T2) = wa £
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are the first moments related to the solvent contribution to transient ab-
sorption («) and emission (¢) spectra, respectively, wy = 2(us) is the sol-
vent contribution to the Stokes shift between the equilibrium absorption and
emission spectra, h20255(t) = (us(0)us(t)) — (us)?, S(¢) is the normalized
solute-solvent correlation function, oy, = h™*({(u2(0)) — (u,)?) is the solvent
contribution to the second central moment of both the absorption and the
luminescence spectra. The terms w(z,,) on the right-hand side of Eq.(55)
describe contributions to the cubic polarizations of the nonequilibrium ab-
sorption and emission processes, respectively.

The third term on the right-hand side of Eq.(57) which is proportional to
§? /095, plays the role of the pulse width correction to the hole or spike width.
This term is important immediately after the optical excitation when 7, ~ 0
and, therefore, S(73) ~ 1. The first term on the right-hand side of Eq.(56)
which is proportional to §? ~ 1/t]2), takes into account the contribution of the
electronic transition coherence.

It is worth noting that Eqs.(53), (55),(56),(57),(58) describe in a contin-
uous fashion a transition from the time frame in which coherent effects like

photon echo exist to the time range where reversible dephasing disappears
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[120, 117]. For acting pulse durations t, satisfying the condition
05t <ty < (1) 02) S = T (59)

Eqs.(53), (55),(56),(57),(58) describe the effects of two-pulse and three-pulse
(stimulated) photon echo [120, 117]. For example, ignoring the vibration wy,
one can obtain from these equations at the specified conditions for two-pulse
excitation [120]: POF ~ exp[—(6%/6)(t — 27)?], i.e., a photon echo appears
in the system. Here 7 is the delay time between the first and the second
pulses.

When

ty, > 1" (60)

and the pump and the probe pulses do not overlap in time, one can ig-
nore terms ~ 6% in Eqs.(56) and (57) [120, 117]. In the last case, Eq.(53)
can be used for any pulse shape, and the cubic susceptibilities X((;Z)cd(wv t,7s)
and Xg)ca,@(wataﬁ) in Eqs.(53),(54),(55) do not depend on time ¢, i.e. they
convert to usual steady-state susceptibilities. In this case, the signal k, =
k... + k,» — k,,, only exists when pulses &, and &,, overlap in time. In

other words, coherence effects associated with the reversibility of dephasing

disappear.
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Thus, the quantity 7" = (7,/02,)"/? plays the role of the irreversible de-
phasing time in the system under consideration [120, 117, 91]. Such an inter-
pretation of 7" is consistent with the behavior of the four-photon scattering

signal excited by biharmonic pumping (see Eq.(44)).

7.1.2 Nonlinear polarization in a Condon case for nonoverlapping

pump and probe pulses

The consideration of Subsec. 7.1.1 is confined by the Gaussian character of
the value u; = Wy, — Wi, For nonoverlapping pump and probe pulses when
condition (60) is satisfied, a nonlinear polarization in a Condon case can be

expressed by the formula [150, 67]:

PV (¢ t) :%ND12(D215(r,t)){i[Fa(w,w,t) — F(w,w,1)]
—I'[(I)a(wvwvt) - q)@(w,w,t)]} (61)

for any u,. Here
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are the spectra of the non-equilibrium absorption («) or luminescence (¢) of

a molecule in solution,
) L e .
Fops(Ww,t) = 2—/ ATy fo,ps(T1, 1) exp(—iw'r) (63)
T J—00
and
, 1 oo .
Foont(@) = 5= [ dnifoonr(m) exp(=iee'n) (64)

the corresponding "intermolecular” (s) and "intramolecular” (M) spectra;

Fo o(wr,w, )

w' —w

S, (Wi, w,t) = W_IP/OO duw’ (65)

are the non-equilibrium spectra of the refraction index which are connected
to the corresponding spectra F, ,(wi,w,t) by the Kramers-Kronig formula,

P is the symbol of the principal value.

foerm(m1) = Trylexp((i/h)Woimm) exp(F(i/R)WiamTi)prom] - (66)

are the characteristic functions (the Fourier transforms) of the "intramolec-

ular” absorption («a) or emission (@) spectrum [151],
P12M = eXP(—ﬁwl,zM)/TTM eXP(_ﬁwl,zM)
is the equilibrium density matrix of the solute molecule,

Joos(11,8) = Trlexp((i/h)usTi)p1,0s(1)] (67)
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are the characteristic functions of the “intermolecular” absorption («) or the
emission () spectra, pias(t) is the field-dependent density matrix of the
system describing the evolution of the solvent nuclear degrees of freedom in
the ground (1) or in the excited (2) electronic states. The latter magnitude
can be calculated by using the method of successive approximations with
respect to the light intensity [91, 150, 142].

The signals in the pump-probe and in the time-resolved hole-burning ex-
periments are determined only by the non-equilibrium absorption and emis-

sion spectra [150, 141, 142]:

AT(7) ~ —w[Fa(w,w,T) — Fy(w,w, T)] (68)

and

Aa(W') ~ —[Folw+ ' w,m) — F(w+w' w, 7)) (69)

Eqs.(68) and (69) have been obtained for pump pulse duration shorter than
the solute-solvent relaxation time.

The formulae of this subsection are not limited by the four-photon ap-
proximation because they are based on the approach of Refs. [143, 91] (see
Subsec. 7.2), which has been developed for solving problems related to the
interaction of vibronic transitions with strong fields.
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7.1.3 Non-Condon terms

Let us consider the non-Condon terms in Eq.(54) for X((;Z)Cd(w,t,Tz). They

have the following forms [99]:
BN () = [ [ ditdia(@)a (i) orerpl—2 SUQ2 (0)
J
< (15 + v} + 20505 U i(12)) + 10mpdsjri (1 — Wi (m2))]} (70)

where m = a, ¢; d,1s the Kronecker delta,

L 1 L
5ul?) = oyt [ 4Quou(@)exp(~i7Q,) (71)

is the Fourier-transformation of the tensor

0u(Qs) = Diy(Qs/2) D3, (Qs/2), (72)

M is the dimensionality of the vector Q, Uy (m2) = (@5;(0)Qs;(72))/( gj(())ﬁs
the correlation function, corresponding to coordinate ();. If this vibration

is an OA one, then the solvation correlation function S(73) is related to the

correlation functions Wy;(72). In the classical case this relation is [83]

S(r2) = D watj Wsj(72) [ (73)

where wy, ; is the contribution of the j-th intermolecular motion to the whole
“intermolecular” Stokes shift wy (W = 3=;wsr;). S(72) can be considered
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as an average of the values W(ry) distributed with the density wg ;/ws. If
the non-Condon contribution is due to a non-OA vibration which does not
contribute to the Stokes shift wg, then W(7) is not related to S(7y).

The second addend in the square brackets in Eq.(70) describes the inter-
ference of the Franck-Condon and Herzberg-Teller contributions. The value

of the parameter d;; can be expressed by the following equation [83]:

(i = (s ) o (74)

—

For freely orientating molecules, the orientational averages (&,4(7)64.(f1))or
can be expressed by the tensor invariants &°, h, and h, [99] (see Appendix

A). In the last case the values Bgch(m)can be expressed by the values [99, 83]

BEn) = [ [ didveep{—2 S Q) (1 + v + 2410, Wo5()

Fi0mpds;vi (1= Wi (1))} (7, 7) (75)

related to the tensor invariants.

74



7.2 Nonlinear polarization and spectroscopy of vi-
bronic transitions in the field of intense ultrashort
pulses

The four-photon approximation used up till now is inadequate in a number of
cases. These are the application of intense ultrashort pulses to femtosecond
spectroscopy [152], the transmission of strong pulses through a saturable
absorber and an amplifier of a femtosecond laser and so on. In Refs.[143, 91]
the problem of calculating the non-linear polarization of electronic transitions
in a strongly broadened vibronic system in a field of intense ultrashort pulses
of finite duration, has been solved. This problem is of interest as it involves
two types of nonperturbative interactions: light-matter and relaxation (non-
Markovian) ones.

This problem is similar to that of calculating chemical reactions under
strong interaction [102, 153]. Let us consider a molecule with two electronic

states (Eq.(3)) which is affected by electromagnetic radiation of frequency w:

E(r,t) = E(r, t) exp(—iwt) + c.c.

DN | —

One can describe an electronic optical transition as an electron-transfer re-
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action between photonic ‘replication’ 1’ of state 1 and state 2* (or between
state 1 and photonic ‘replication’ 2’ of state 2) induced by the disturbance
V(t) = =Dy - E(t)/Z The problem of electron transfer for strong interaction
has been solved by the contact approximation [102, 153], according to which
the transition probability is taken as proportional to 6(Q — Qo) where Q) is
the intersection of terms. The contact approximation enables one to reduce
the problem to balance equations.

A similar approximation can be used in the problem under consideration.
One can describe the influence of the vibrational subsystems of a molecule
and a solvent on the electronic transition within the range of definite vi-
bronic transition 0 — k related to HFOA vibration (= 1000 — 1500cm™!) as
a modulation of this transition by LFOA vibrations {w;,} (see Subsec.5.2). In
accordance with the Franck-Condon principle, an optical electronic transition
takes place at a fixed nuclear configuration. Therefore, the highest probabil-

ity of optical transition is near the intersection () of ‘photonic replication’

2The wave function of the system can be expanded in Fourier series due to the periodic
dependence of the disturbance on time: ¥ (z,t) = 5.7 o, (x,t) exp[—i(e + nw)t], where
on(2,1) is a slowly varying function. Photonic ‘replication’ 1’ corresponds to the ground

state wave function for n = 1.
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Figure 13: The adiabatic potentials corresponding to electronic states 1,2

and their photonic ‘replications’ 17, 2".




and the corresponding term (Fig.13) and rapidly decreases as |Q — Qo in-
creases. The quantity us(Q) = WQS(Q)_WIS(Q) is the disturbance of nuclear
motion under electronic transition. Electronic transition relaxation stimu-
lated by LFOA vibrations is described by the correlation K(t) = (us(0)u,(t))
of the corresponding vibrational disturbance with characteristic attenuation
time 7, (see Sec.3 and Subsec.5.2). 3,72 > 1 for broad vibronic spectra
satisfying the ‘slow modulation’ limit, where oy, = KS(O)?%_2 is the LFOA
vibration contribution to a second central moment of an absorption spec-
trum. According to Ref. [120], the following times are characteristic for

the time evolution of the system under consideration: 02_51/2

< T <« 7,
where 02_51/2 and 7" = (7'5/025)1/3 are the times of reversible and irreversible
dephasing of the electronic transition, respectively (Subsec. 7.1.1). Their
characteristic values are 02_51/2 ~ 107 Ms, TV~ 2.2 x 107Ms, 7, & 107125 for
complex molecules in solutions. The inequality 7, > T" implies that optical
transition is instantaneous and the contact approximation is correct. Thus,
it 1s possible to describe vibrationally non-equilibrium populations in elec-
tronic states 1 and 2 by balance equations for the intense pulse excitation
(pulse duration ¢, > T"). This procedure enables us to solve the problem for

strong fields.
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7.2.1 Classical nature of the LF vibration system and the expo-

nential correlation function

We suppose that hws; < kT. Thus {@w;} is an almost classical system
and operators W, are assumed to be stochastic functions of time in the
Heisenberg representation. wu, can be considered as a stochastic Gaussian
variable. We consider the case of the Gaussian-Markovian process when
Ks(t)/Ks(0) = S(t) = exp(—|t|/7s). Using Burshtein’s theory of sudden
modulation [11, 102, 153], one can obtain the approximate balance equa-

tions for the density matrix of this system when it is excited with pulses of

duration ¢, > (7,/09,)"/° [143, 91]:

%P]‘j (1) = (=1 7% (7/2) § (wor —w — o) D E()PA (o, 0)+ Lispy5 (0, 1)
(76)

where j = 1,2; o = —u/h, wyy is the frequency of Franck-Condon transition

I =2, A(d,t) = p11 (&, 1) — paa (&, t). The operator Lj; is determined by

the equation:

o s (77)
_— a s 9
J (o — dj0wst) “0 (o' — 5j2wst)2

LJ‘]‘ = 7'5_1 1 —|— (Ozl — 5j2w5t)

d;; is the Kronecker delta, wy; is the Stokes shift of the equilibrium absorption
and luminescence spectra. The partial density matrix of the system p;; (o', 1)
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describes the system distribution in states 1 and 2 with a given value at time
t. Eq.(76) corresponds to the contact approximation [153].

The complete density matrix averaged over the stochastic process which
modulates the system energy levels, is obtained by integration of p;; (o', )

over o'
pii (1) = [ pis (el 1) dot. (78)
The positive frequency component of the nonlinear polarization is expressed

in terms of A = p1; — pag [143, 91]:

' ¢
PNt (1) = —%NDHU@ (wa1) (2#025)1/2/ drl(t — 7) A (w2 —w,t —7)
0

1

x/()tdrngl-E(t—Tl) > exp{—§0(7)712—i[wj (7) = w] 7 }(79)

J=a,p
where o (1) = o35 [l — S?(7)] is the time-dependent central second moment
of spectra, o, (w21) is the cross section at the maximum of the absorption
band, [(t) is the power density of the exciting radiation, w; (1) = we —
djowst + (W — war + §j,wst )5S (7) are the first moments of transient absorption
(Jj = a) and emission (j = ¢) spectra. The quantity A (w1 — w,t — 7) is the

solution of the integral equation:
t
A () =1— 0, (wa) / drl(t)A' ()R (t— 1), (80)
0
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where A’ (1) = A (w21 — w, 1) /A (w21 — w,0),

R(1) = [0/(1) J02.] "2 52y exp{— [ — oy (1] / 20 (1)]} describes the con-
tributions from induced absorption (j = «) and induced emission (j = ¢) to
A’ ().

Eq.(80) is the main result of the section devoted to intense pulses. As it
follows from Eq.(79), the distinction from four-photon calculations consists
in substituting the solution of Eq.(80) A (w21 — w,t — 7) for the equilibrium
value A (wy; —w,0) = (2%025)_1/2 exp {— (war — w)2 / (2025)} )

The solution to Eq.(80) by Padé approximant [0/1] [154] is [143, 91, 155]:
¢

A (1) = [+ o) [ drl(n) R(t=7)]7" (81)
0

This solution does not practically differ from the exact one, even at a compar-
atively large saturation parameter o, (ws1) Imaxt, ~ 1, when the perturbation
theory does not hold [155].

Formulae (79), (80), (81) solve the problem of calculating a nonlinear
polarization of the system under study in the field of sufficiently intense
ultrashort pulses whose intensity is confined by the condition o, (w21) Imax <
().

Using Eq.(81), one can find criteria for the necessity of taking into ac-
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count the saturation effect. For long pulses 2¢{, > 7, it has the usual
form: o, (w21) Imax ~ t;l. However, for sufficiently short pulses (2¢, <
Ts) saturation is realized for essentially smaller intensities: o, (wa1) Imax ~
(thrs)_l/z. In the latter case, due to inhomogeneous broadening, the sat-
uration is reached in a range narrower than the width of the equilibrium
absorption spectrum.

Eq. (79), which is linear with respect to F (¢ — 71), is correct for any
duration of the pulse corresponding to this field. If the weak probe pulse is
merely a copy of the pump pulse shifted in time, as it was in the transmission
pump-probe experiments [79, 80] (see Sec. 2) then the imaginary part of

the positive frequency component of the total polarization (not only of its

nonlinear part) has the following form [91]:

ImP™T (1) = Im[NDyapa (1) exp (iwt)] = %NDUW Doy - B (1) A(wn —w,1).
(52)
This quantity defines an absorption of the field E (1).
Using the developed theory we have generalized the four-photon approx-

imation theories [86, 156] of the time-resolved hole-burning experiment for

the case of sufficiently intense pump pulses [91].
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7.2.2 General case. Quantum nature of the LF vibration system

In the general (non-classical and non-Gaussian) case, one can also reduce
the problem under consideration to the solution of equations (operator ones)
for the populations of electronic states [91, 150, 142]. Using these equations
strongly simplifies the problem, because they may be solved to any order n
with respect to the quantity Dy - E|2, which is proportional to the light
intensity. As a result, the polarization P*(¢) may be calculated to any order
2n + 1 with respect to the acting field. For example, the cubic polarization
can already be calculated by solving the population equations only to the first
order with respect to |Dyy - E|2 However, one can not obtain in the general
case a closed equation for the averaged population difference like Eq.(80). It
was possible only due to the Markovian character of the modulating pertur-
bation in Subsec. 7.2.1.

For a chromofore molecule in a solvent a nonlinear polarization can be

expressed by the formulae of Subsec. 7.1.2.
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8 Experimental study of ultrafast solvation

dynamics

Recently, time resolved luminescence (TRL) and four-photon spectroscopy
have been applied to probe the dynamics of electronic spectra of molecules
in solutions (solvation dynamics) [157-163, 64, 164, 31, 55, 60, 61, 76, 75,
62, 63, 65-67, 81]. In TRL spectroscopy a fluorescent probe molecule is elec-
tronically excited and the fluorescence spectrum is monitored as a function of
time. Relaxation of the solvent polarization around the newly created excited
molecular state led to a time-dependent Stokes shift of the luminescence spec-
trum. Such investigations are aimed at studying the mechanism of solvation
effects on electron transfer processes, proton transfer, etc. [157-159, 162-164].
In this regard it is worth noting the works by the Fleming’s and Barbara’s
groups on observation of ultrafast (subpicosecond) components in the sol-
vation process [162-164, 157, 144, 165] and systematic studies of solvation
dynamics by Maroncelli and others [166, 148]. The experimental efforts were
supplemented by results of molecular dynamics simulations and the theory
by Maroncelli and Fleming [158, 167], Neria and Nitzan [168], Fonseca and

Ladanyi [169], Perera and Berkowitz[170] and Bagchi and others [171-173].
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The four-photon experiments were carried out with both very short pump
pulses (pulse duration ¢, ~ 10fs) [55, 60, 61, 76, 75, 62, 63, 59] , and
pulses long compared with reciprocal bandwidth of the absorption spectrum
and irreversible electronic dephasing T" (¢, ~ 100fs) [65-67, 81] (see also
[174]). Photon echo measurements which were conducted with former pulses
in Shank’s, Wiersma’s, Fleming’s groups and by Vohringer and Scherer, pro-
vided important information on solvation in the condensed phase [55, 60, 76,
61, 75, 62, 63]. For example, three pulse stimulated photon echo experiments
[62-64] showed that the echo peak shift, as a function of a delay between the
second and the third pulses, could give accurate information about solvation
dynamics.

Recently an excellent review [34] has been published devoted to photon
echo and fluorescence Stokes shift experiments. Therefore, we will concern
ourselves here with four-photon spectroscopy with pulses ¢, > 02_51/2. We
have already discussed the potentials of this spectroscopy in Sec. 7.

As an example we will consider the resonance heterodyne optical Kerr-

effect spectroscopy of solvation dynamics in water and D,0O [83].
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8.1 Introduction

Recently, interesting results have been obtained concerning the ultrafast sol-
vation dynamics in liquid water [175, 144, 164, 176, 173, 177]. It was found,
experimentally [164], by use of molecular dynamical simulations and theory
[176, 173, 177] that the solvation of a solute molecule (or ion) in water is
bimodal. The solvation correlation function is Gaussian at short times and
exponential at long times. Solvation studies are of great importance, since
the time response of solvent molecules to the electronic rearrangement of a
solute has an essential influence on the rates of chemical reactions in liquid
[164, 178] and, particularly in liquid water.

A question arises when and if the solvation dynamics of a solute in deuter-
ated water is similar to water [173]. The Debye relaxation time, measured
by the dielectric relaxation technique for D,0 is slower than that for HyO at
the same temperature [179]. Deuterated water is a more ordered liquid with
a stronger hydrogen bond compared to normal water [180]. It was predicted
that a significant isotope effect may be observed in ion solvation of normal
and deuterated water in a (sub)picosecond range [173]. It was reported in

Ref.[165] (see also Ref.[144]), that a small isotope effect exists in water for

86



the longitudinal relaxation time.

Using the resonance heterodyne optical Kerr-effect technique [82, 81, 181]
we studied the solvation dynamics of two organic molecules: rhodamine 800
(R800) and 3,3-diethylthiatricarbocyanine bromide (DTTC B) in normal and
deuterated water in femto - and picosecond ranges [83, 84]. We found a
rather significant isotope effect in the picosecond range for E800, but not for
DTTCB. We attribute the R800 results to a specific solvation in rhodamine
800 due to the formation (breaking) of an intermolecular solute-solvent hy-
drogen bond. Another important aspect of this study is that the solvation
correlation function is bimodal with an ultrafast femtosecond component

< 100fs.

8.2 Calculation of HOKE signal of R800 in water and

D50

Here we will apply the general theory described in Subsec. 7.1 to the calcu-
lation of the HOKE signal of R800 in water and D;O.

Let us consider the spectra of R800 in water and other solvents (Fig. 14).
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Figure 14: Absorption (1) and emission (2) spectra of R800 in water (a),
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This molecule has a well structured spectra which can be considered as
a progression with respect to an OA high frequency vibration ~ 1500cm ™1
[125]. The members of this progression are well separated, and their am-
plitudes rapidly attenuate when the number of the progression member in-
creases (as one can see from Fig. 14, the amplitude of the third component
is rather small). Such behavior provides evidence of a small change of the
molecular nuclear configuration on an electronic excitation. In other words,
the Franck-Condon electron-vibrational interactions in rhodamine molecules
are small. The resonance Raman scattering studies of rhodamine dyes [182,
183] display intense lines in the range of ~ 1200 — 1600cm ™! and the lowest-
frequency one at 600cm™! in both alcohol and water solutions. Therefore,
one can assume that the intramolecular vibrational contribution to the line
broadening of the R800 in water in the range between the electronic tran-
sition frequency w,; and the first maximum is minimal. In our experiments
the excitation frequency corresponds to this range (w = 13986em™").

Let us discuss the interactions with the solvent. Bearing in mind our
comments concerning the role of the intra - and inter-molecular interactions,
we can assume that criterion (51) is correct for the first maxima in both the

absorption and luminescence spectra of the BR800 in water. In the last case,
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095 1s the central second moment of the first maximum.

The criterion (52) is also well realized in our experiments, since ¢, ~ 100 fs
(in the first series of our measurements ¢, ~ 150fs) and 02_51/2 ~ 14fs.

Let us discuss the role of non-Condon effects for BR800 in H,0 and D,0O.
The absorption spectra of R800 in water and D,O differ from the correspond-
ing spectra in other solvents (Fig. 14). Solvents like Hy0O and D;O influence
the relative intensities of spectral components in the absorption band. Such
behavior can be described by the dependence of the dipole moment of the
electronic transition D1y on a solvent coordinate D12(Q;) [99], i.e. by the
non-Condon effect. Thus, the electronic dipole moment dependence on a sol-
vent coordinate must be a necessary component of our consideration. More-
over, the R800 absorption spectrum in D,O differs from that of H,O. The
substitution of H by D influences the absorption spectrum shape. Therefore,
one can assume that the dependence D15(Q;) is determined by the solute-
solvent H-bond in water. The analytical form of the D12(Q;) dependence is
determined by invoking a specific model for the interaction.

Let us consider the HOKE signal for the LO phase v = 0 (Eq.(7)).

Bearing in mind Eq.(55), we can write the imaginary part of the Condon
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(3)

contributions X e, ,(w,t,72) in the form:

ImX oo, tm2) = =(20°) PN LR erp(—7o/ Th) (o(m2)) 7

x I

0,sc

(w— we)Rew(z, ) (83)

where we insert t,, = 0 and ¢,,» + t,,» = 7 in Eq.(56) for z, .

The last equation corresponds to a case where only the first maxima of the
absorption and the emission spectra are taken into consideration (n = k = 0).
This simplification is justified due to the specific relative position of the
excitation frequency w with respect to the rhodamine’s spectra.

The cubic polarization for the HOKE experiment (Y is the signal polar-
ization axis, the probe pulse polarization is along the X axis and the pump
pulse is at 45° with respect to both X and Y) can be written in the form (see

Eqs.(13),(54),(70),(75) and Appendix A):

1 o0 1
PIH1) = 230 [ drx R (et {(EBIF ()€t — )
a&,Q
N 1 1
st = 1) + [By™(m2) + 55 BI(m) = £ B (m)]

}Erp(V)Esu(t — 79 — TVEL(t — )} (84)

For subsequent calculations we ought to choose a concrete dependence of

D(Q;).

91



When the dipole moment D15(Q;) changes its direction only but preserves
its modulus [99, 66] (see Eqgs. (125),(126),(127),(128) below), the values By,

0,s,a

are given by the following equations:

By = Bf = Dy/9: B} = Bf = 0; (85)

BIO(r) = (D/2){5 + expl= 3 r(1 = W)

J

% €o8[dmp D7 (1 = Wj(m2) ) (Bhewse, 1)1} (86)

J

where r; = 2a;1/(Q%,(0)) are constants characterizing the correlations of the
vector Dg; with the j-th intermolecular vibration, Dy = |Da1l, ws; is the
contribution of the j-th intermolecular motion to the total "intermolecular”
Stokes shift wy (wse = -5 Wt ), Yj(72) is the normalized correlation func-
tion, corresponding to the j-th intermolecular vibration which is related to
the solvation correlation function S(my) by Eq.(73). It is worth noting that
the cosine term on the right-hand side of Eq.(86) for BY describes the interfer-
ence of the Franck-Condon (dynamical Stokes shift) and the Herzberg-Teller

relaxation dynamics.
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8.3 Method of Data Analysis

Our aim is to determine the solvation correlation function by resonance
HOKE spectroscopy. According to Eqs.(7),(56),(57), (58),(83),(84) we need
to know, for this purpose, the following characteristics of the steady-state
spectra: w; and the solvent contribution to the Stokes shift between the
equilibrium absorption and emission spectra wy. The latter is related to the
solvent’s contribution to the second moment o, by the relation: wy = hfo,;,.
One can determine w,; as the crossing point in the frequency scale of the equi-
librium absorption and emission spectra of R800 (w. = 14235¢m ™! for water
and is about the same for D;0).

The solvent contribution to the central moment oy, can be determined
by the relation §Q = 2v/204,In2 where §Q is the half-width of the first
absorption maximum. In order to exclude from our consideration the con-
tribution of the second maximum and the optically active vibration of the
frequency ~ 600cm™' | we determined 6 as twice the distance (in the
frequency domain) between the luminescence maximum and the right-hand
side half maximum of the first luminescence maximum. Using this method,

we obtain oy, = 115416cm ™% for the water solution and therefore wy =
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hBcys = 550cm™t, which conforms with the experimentally measure value.
For Dy0 the relation ws; = h3o9, 1s an approximate one, and we suppose in
this case that oy, = 123900cm =2 .

Bearing this in mind, we fit our experimental data by Eqs.(7),(56),(57),(58),
(73),(74),(83),(84), (85),(86). We present the correlation function S(73) in

the form of a sum of a Gaussian and one or two exponentials:

S(r2) = agexpl—=(r2/77)"] + 3_ ai exp(—72/7ei), (87)

=1
where a; + Y;a; = 1, 7.2 is the decay time of the slow (picosecond) expo-
nential. We relate it to the solute-solvent H-bond , and therefore connect

the correlation function for the "non-Condon” intermolecular motion on the

right hand side of Eq.(87) with this exponential:

Usj(m2) = exp(—72/7e2) (88)

Comparing Eqs.(87) and (73), we can express the value wy ; in Eq.(73) by

parameters af, az and wg :
wst; = (1 —ap — ay)wst (89)

Correspondingly, the fitting parameters are ay, ay, 7y, Te1, ez and r? = 7«]2_
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The pulse duration ¢, in our experimentsis ¢, ~ 70—150fs, depending on
the laser excitation wavelength. In the case of ultrafast OKE experiments,
the decay time T} in Eq.(83) is replaced by the orientation relaxation time
Tor of the solute molecules, if the latter is shorter than 7T . For rhodamine
dyes Ty ~ 1 — 2ns > 7, ~ 150ps. We multiplied the experimental data
by the factor exp(7/7,.) and compared the theoretical and the experimental
data for delay times 7 < 7, ~ 150ps. Fig. 15 shows the computer fit results
of the experimental data of E800 in H,O and D,0. The fit of the theoretical
calculations to the experimental curves is good. The insert in Fig. 15 shows
the solvation correlation functions S(t) of R800 for HyO and DyO found by
the computer fitting procedure.

We also carried out the corresponding measurements for BR800 in water
at different excitation frequencies w (Fig. 16a). Fig. 16b shows theoretical
spectra for different excitation conditions, i.e. w and ¢, for rhodamine 800
in water. We used the same parameter values of the previous fit (Fig. 15)
for curves of Fig. 16b. One can see that the theoretical curves reproduce all
the fine details observed in the experiment (in particular, the decrease in the

amplitude of the slower signal component for “blue” excitations).
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Figure 15: HOKE signals for R800 in water (1) and D0 (2).
Dots and diamonds - experiment, solid lines - computer fit using
Eqgs. (7),(56),(57),(58),(73),(74),(83),(84),(85),(86),(87),(88),(89) for t, =
150fs, r2 = 2.5, 7y = 85fs; ay = 0.6 (1) and 0.44 (2), a; = 0 (1) and
0.156 (2), 7oy = 146fs (2), Te2 = 6.8ps (1) and 10ps (2). Insert - solvation

correlation functions for H2O (1) and D,0 (2).
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Figure 16: Experimental (a) and calculated (b)) HOKE signals for R800 in
water for different excitation frequencies w and pulse duration t,.
a: w = 13755ecm™". t, = 125fs (1); w = 13550ecm ™1, ¢, = 100fs (2).

b: w=13831lem™'. t, = 130fs (1); w = 13441em™1, t, = 90fs (2).




8.4 Discussion

The correlation solvation functions for £800 in water and Dy consist of two
main components: an ultrafast Gaussian one with 7; ~ 85fs < 100fs, and a
slow one with an exponential decay of a few picoseconds. Only a small part
of the fast signal component can be explained by the coherent spike. The
main contribution to it is due to the hole burning effect.

The amplitude of the Gaussian component is about 60% for water, and
the sum of a Gaussian and a fast exponential for D,O is also 60%. This
value is close to that observed by Fleming et al. (~ 50%) for coumarin 343
solvation in liquid water [164]. Its duration (85fs) is about 1.7 times longer
than that observed in Ref. [164]. The large difference can be explained as
follows. The solvation, observed in Ref.[164], has been interpreted as an ion
one [173]. According to Ref.[173], the dipole solvation is slower than the ion
one. Therefore, if in the case of R800, the solvation is due to dipole or higher
multipole interactions, its fast component is slower than that of ion solvation.
The fast exponential of 146 fs for DyO corresponds to that observed for a
water solvation in Refs.[144, 164].

Let us consider the slow components of the correlation functions for HyO
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and D;0 (Eq.(87)) (7.2 = 6.8ps for HyO and 7., = 10ps for Dy0). They
are close to the Debye relaxation times 7p for these solvents (8.27ps and
10.37ps, respectively [179]). Such long components have not been observed
in recent studies of solvation dynamics of other solutes in water [144, 164].
We interpret our observations as a specific solvation related to formation (or
breaking) of an intermolecular solute-solvent hydrogen bond between R800
and water molecules. The situation is similar to that observed by Berg and
coauthors [184, 185] on specific solvation dynamics of resorufin in alcohol
solutions. In hydrogen-bonding solvents, the longest component of the Debye
dielectric relaxation is assumed to be related to the rate of hydrogen-bond
reorganization of the solvent [185-188]. According to Ref.[186], time 7p may
reflect translation in water. In computer simulations the autocorrelation time
of hydrogen bonds in water is 5 — 7ps [185, 189]. Thus, the assumption that
the slowest solvation is related to the reorganization of a hydrogen bond,
seems rather plausible.The experimental data for RS00 show a significant
isotope effect in water (~ 32% for times 7.2), in contrast to study [184] in
which an isotope effect in deuterated ethanol was not observed. It would be
expected in view of the larger number of H-bonds that water makes [190].
The hydrogen-bond formation (or breaking) assumption correlates with
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occurrence of non-Condon effects. The dependence D(Q) is essential for a
large change in Q. This is the case of hydrogen-bond formation (or breaking)
where a large () is accompanied by a large hopping distance (3.3121 for water
[186]) and a small activation energy.

In Fig. 17 the HOKE data for DTTC B solution in water and DO are
shown. These data reflect only fast dynamics of solvation (the non-specific
one) and do not show any significant isotope effect.

In conclusion, using the time resolved HOKE technique, we have studied
the ultrafast solvation dynamics of 800 and DTTC B in water and D;0.
According to our findings, the time dependence of the HOKE signal for
R800 at the frequency domain under consideration, is determined mainly
by solute-solvent interactions. The significant change in the HOKE signal
during the first ~ 100fs is determined largely by the transient hole-burning
effect. A biphasic behavior of the solvation correlation function is essential
for obtaining a good fit with the experimental data. The fast component
of solvation dynamics for both BR800 and DTTCB is determined by the
non-specific solvation. The slowest component for R800 (which is close to
the Debye relaxation time) is determined by a specific solvation related to
formation (or breaking) of an intermolecular solute-solvent hydrogen bond.
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Figure 17: HOKE data for DTTC B solutions in water (solid line) and D,O

(dotted line); t, = 70fs, w = 13330cm ™!,




Correspondingly, we observe a significant isotope effect for the R800 solution,
and do not observe an isotope effect for DTT'C'B, which does not seem to

form a solute-solvent hydrogen bond.

9 Prospect: Spectroscopy of nonlinear sol-

vation

In this section we will discuss the advantages of transient four-photon spec-
troscopy with pulses longer than the electronic transition dephasing. We will
show that it can be used for the nonlinear solvation study, i.e., when the
linear response for the solvation dynamics breaks down.

As has already been intimated in the beginning of Sec.7, one can control
relative contribution of the ground state (a hole) and the excited state (a
spike) to an observed signal by changing excitation frequency w. This prop-
erty of the spectroscopy with pulses long compared with electronic dephasing
can be utilized for the nonlinear solvation study.

In the last few years, much attention has been given to the problem of

nonlinear solvation [191-193, 169, 194-198]. In the case of linear solvation
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the spike and the hole motions can differ only by initial conditions of the
excitation. However, in the case of nonlinear solvation when the field created
by a solute strongly changes during electronic excitation, relaxation of the
solvent polarization occurs under conditions which are essentially different
from those of the initial electronic state, and the spike and hole motions
strongly differ irrespective of the initial conditions of excitation.

A molecular dynamics simulation study of solvation dynamics in methanol
[169] and polyethers [195] showed the breakdown of the linear response theory
for this process. Solvation dynamics processes in the ground state of a solute
differ from those of the excited electronic state [169]. In this section we
will show that spectroscopy methods considered in Sec. 7, allow to obtain
separate information concerning solvation dynamics of a solute in the ground
and in the excited electronic states, and therefore, enable the study nonlinear
solvation.

The aim of the theory is to relate the signal obtained in transient spec-
troscopy measurements to the solvation characteristics. There are four-time
correlation functions in nonlinear spectroscopy where the system evolution
is determined in the excited electronic state, and the thermal averaging is
carried out in the ground electronic state [31, 67, 199, 78, 32, 150]. Apply-
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ing stochastic models to the calculation of such correlation functions, results
in missing any effects connecting with the situation when the chromophore
affects the bath, in particular, the dynamical Stokes shift (see, for exam-
ple, review [32]). Indeed, the electronic excitation of a molecule results in a
situation where the solvent configuration does not correspond to the upper
electronic molecular state. The solvent (bath) is forced to relax to a new equi-
librium configuration. It is precisely this reverse influence of the molecule
on the solvent (bath) that cannot be taken into account in the limits of
the stochastic approach. The latter makes the use of stochastic models in
nonlinear spectroscopy of solvation dynamics meaningless, because the main
effect of solvation is the Stokes shift. This is unfortunate since the stochastic
models enable taking into account, in a simple way, many features of nuclear
dynamics.

However, it is possible to overcome this difficulty if one takes into account
the change in molecular electronic states before using the stochastic approach
[141, 142]. One can express four-time correlation functions by the ones in
which the thermal averaging is carried out in the same electronic state as
the system evolution (equilibrium averages). In the last case, there is no
change in the electronic molecular states while using the stochastic approach,
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and therefore applying the stochastic models will not result in missing the
dynamical Stokes shift. We shall use such an approach in this section and
investigate the influence of the intramolecular spectrum on the transient
spectroscopy signal (TRL and RTFPS with pulses long compared with the

electronic transition dephasing).

9.1 Four-time correlation functions related to defi-
nite electronic states

In the case of nonlinear solvation, u, = Wy, — Wi, is not a Gaussian quantity
due to different solvation dynamics in the ground and in the excited electronic
states. Therefore, we will use a non-Gaussian formulation of the nonlinear
polarization of Subsec.7.1.2. We can represent the formula for the charac-
teristic functions of the “intermolecular” spectra f, ,5(71,1) (see Eq.(67)) in

the four-photon approximation in the following form [141, 142]:

(_1)1' t B ,
fJS(Tlvt) = E /0 d7—2|D21E1(I',iL — T2)|

></_ drs 5 ai(73) expl=72/Ti + i73(w — wer)|M;(71, 72, 73), (90)
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where j =1,2; a =1, p = 2;
i
Mj(r1, 72, m3) = Trofexply (uj(72)7 = uj(0)73)]pf, ) (91)

the index ‘¢’ denotes the equilibrium state,

i

1
uj(m) = GXP(%W]‘TQ)US eXp(—thTg).

Averages (Eq.(91)) can be found using either classical or stochastic ap-
proaches. In the classical analysis [32] we can calculate uy o(73), if we find
the classical trajectories Qq2(72) in the ground (Qq) or in the excited (Qz)
electronic states such that u o(72) = us(Q1,2(72)). In the last case, the values
u12(72) = us(Qr2(72)) are C-numbers. Apparently, the value uy(72) is deter-
mined by a motion in the ground electronic state, and us(72) - by a motion
in the excited electronic state. The thermal averaging in Eq.(91) is carried
out with respect to the ground electronic state. However, applying stochas-
tic models to the calculation of Mjy(71, 7, 73), where the system evolution
is determined in the excited electronic state 2, and the thermal averaging
is carried out in the ground electronic state 1, results in missing any bath
effects on the chromophore, in particular, the dynamical Stokes shift. We

can overcome such a difficulty if we will express M(71, 72, 73), by a four-time
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correlation function related to a definite electronic state [141, 142]:

by i , _
M;(11,72,73) = —b] exp[%<u5>j(rl — 73 — 162, Bh)|M;(T1, T2, T3) (92)
1s

where b;; = T'r; exp(—B8Wj,),

M;(71, 72, 73) = <6XP{%[UJ(72)71 — u;(0) (73 + 1d9;8R)] 1), (93)

are the central four-time correlation functions, w;(7) = u;(7) — (u(0)); is the
central value of u;(7y); (--+); = Trs{- -+ p5,} denotes the average with respect
to electronic state j; dy; is the Kronecker delta.

In Eq.(93) the averaging is carried out in the same electronic state as
the classical trajectory calculations (equilibrium average), and the stochastic
model can be used for the calculation of Eq.(93) and all the expressions
resulting from it.

We expand the four-time correlation function by cumulants [200] (see

explanation of cumulant averages in Ref.[31], chapter 8)

W71, 75) = exp{3 ()" [ = w(0)(rs + i 50)]")s ) (94)

Here suffix ‘¢’ means that (- - -).; is defined as a cumulant average with respect

to state j.
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9.2 Simulation of transient four-photon spectroscopy
signals for nonlinear solvation

In this subsection we will simulate by using Eqs.(5),(61),(62),(63),(64),(65),(66),(68),(69),
(90), (92),(94) and (96) (see below) the signal for various methods of transient
spectroscopy with pulses long compared with electronic dephasing. We shall
use the solvation correlation functions of a nonlinear solvation calculated by
Fonseca and Ladanyi for a dipole solute in methanol [169] (Fig. 18). Unfortu-
nately, their simulations are limited by normalized correlations functions of
the second order. Therefore, in our simulations we can use expansion Eq.(94)
only up to the first term, thus confining our consideration up to the second
order cumulants. The corresponding formula for the cubic polarization dif-
fers from the one for linear solvation (Subsec.7.1) by the presence of different
solvation correlation functions describing the dynamics in the ground or in
the excited electronic states.

Fig. 19a shows the calculation results for RT'GS. For comparison we also
show the corresponding signals when both ground and excited states corre-
lation functions coincide (linear case) and are equal either to the correlation

function of the excited state Scs(t) (curve 2) , or to the ground state Sys(t)
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Figure 18: Solvation correlation functions for the ground (gs) and the excited

(es) electronic states calculated in Ref. [169].



(curve 3). The equilibrium spectra of the molecule in solution F(w) (curve 4)
and F¢(w) (curve 5), and the shapes of the ‘intramolecular’ spectra F p(w)
(curve 6) and the F,p(w) (curve 7) (when the solvent contribution is absent)
are shown in the inserts to Figs. 19,20,21. The arrows show the relative posi-
tions of the excitation frequency w. One can see that for the excitation at the
frequency of the purely electronic transition, the signal provides combined
information concerning the solvation dynamics in both states. But for the
excitation at the maximum of the absorption band, the signal mainly reflects
the solvation dynamics in the excited electronic state (Fig. 19b).

Fig. 20 shows the calculation results using Eq.(68). It can be seen that
for the excitation on the blue side of the absorption spectrum, the transmis-
sion pump-probe experiment provides information concerning the solvation
dynamics in the ground electronic state.

The same is true for the HOKE signal at ¢» = 0 (Eq.(7)), since the right
hand side of Eq.(68) also describes a signal for the latter case (see above).

Such behavior can be understood if we compare the contributions from the
transient absorption F,(w,w,7) and emission F,(w,w, ) spectra related to
the dynamics in the ground and in the excited electronic states, respectively.

Let us first consider only the contribution of the intermolecular motion to
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Figure 19: The RTGS signal for the case of nonlinear solvation (1) calculated
by the correlation functions of Ref. [169] (see Fig. 18); other parameters of
the system are identical to the parameters used in the numerical calculations
in Refs. [65, 99]. Curves 2 and 3 in Figs. 19,20,21 correspond to signals when
both ground and excited states correlation functions coincide (linear case)
and are equal either to the correlation function of the excited state (2) or
to the ground state (3). Insertions to Figs. 19,20,21: equilibrium spectra of
the molecule in solution (4,5), and the shapes of the ‘intramolecular’ spectra

(6,7); the arrows show the relative positions of the excitation frequency w.
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‘Figure 20: The transmission of the probe signal in pump-probe experiments

(and the HOKE signal at 1 = 0) in the case of nonlinear solvation. The rest

is the same as in Fig. 19.



Fo o(w,w, 7). Then, using the four-photon approximation with respect to

light-matter interaction, we obtain [142]

|F@(w7w77—)|
| Fo(w,w, T

1 —S(7)

1+50) )

— exp | A3 (w — w)

One can see that for the delay time 7 = 0 (S(0) = 1), the ratio (95) is
equal to one. If w > wy, this ratio diminishes when 7 increases (S(o0) =
0) and approaches to exp [—hf3 (w — we)] which is much smaller than 1 for
R (w —we) > 1. This is explained by the fact that the spike relaxes much
faster than the hole for A3 (w — we) > 1. It is related to the Franck-Condon
principle: the sublevels of the excited electronic state achieved upon vertical
optical transition, correspond to a higher excitation level than the ones in
the ground electronic states and therefore the former relax faster [120].

Such a picture is qualitatively held for the case which includes intramolec-
ular vibrations (see Ref.[142]).

Now let us consider the HOKE signal when the LO phase ¢ = 90°. Using

Eqs.(7) and (61), we obtain:
Japr(Y =90°) ~ =[P (w,w,7) = By(w,w, 7)] (96)

We can see that for the excitation, as it is shown in Fig. 21, the HOKE signal
reflects mainly the solvation in the excited electronic state.
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Thus, using different methods of spectroscopy with pulses long compared
with the electronic transition dephasing at different excitation frequencies,
we can separately investigate the solvation dynamics in the ground electronic
state or in the excited state, and this enables us to study the nonlinear

solvation.

9.3 Spectral moments of the non-equilibrium ab-
sorption and luminescence of a molecule in so-

lution

The previous subsection’s consideration was of a preliminary nature since it
was limited by the second order cumulants. Here and in the following sub-
sections, we shall show how to correctly characterize the nonlinear solvation
(non-Gaussian) case.

The nonlinear polarization and the transient spectroscopy signal can be
expressed by the spectra of non-equilibrium absorption («) and luminescence
() of a molecule in solution [Eqs.(61),(62),(63),(64),(65),(66),(90), (68),(69)
and (96)] which are the convolutions of the ”inter” - and ”intra”-molecular

spectra (Eq.(62)). Therefore, we calculate the normalized spectral moments
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(Wi ,ps(7))
(e, ps)

of the "intermolecular” spectra F, ,s(«’,w, 7). By using them, one
can easily find the spectral moments of the whole spectra F,, ,(w,w, 7).
For simplicity, we consider that the pump pulses are shorter than the
solute-solvent relaxation time and do not overlap with the probe ones. The
n-th noncentral moment of non-equilibrium ”intermolecular” spectra F, . is

determined by

Wo aps / Foz 05 w17w T)dwl (97)
Using Eqs.(90),(92) and (94), one can obtain for the first moment [141, 142]:

(Wi es(T))

Wy (us)i/h+ 015 (7) (98)
where
517 = Ty o e 0 (s

6, kZ: k!((;hff)k)! d”;wzzlgw)} (99)

The values 0, (7) are the "partial” central moments:

o (1) = /_ Z (wr — (us);/h)" %m (100)

where Fjs (wi,w, ) are the "intermolecular” spectra of the non-equilibrium
absorption (j = «) or luminescence (j = ¢) determined by Eq.(63).
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Eq.(99) relates the first moments of the nonequilibrium absorption (j = 1)
and emission (j = 2) spectra to the correlation functions (u”(0)u;(7))c; of
the solute-solvent interaction uy, = Wy, — Wi, . The coefficients of expansion
(99) are determined by the experimentally measurable values: derivatives of
the equilibrium absorption spectrum F<(w) of a solute molecule in a solu-
tion. Dependence of the first moments on F(w) reflects the fact that in the
nonlinear case, the spectral dynamics depends on the excitation conditions.
Eq.(99) can be considered as a generalization of the fluctuation-dissipation
theorem for the nonlinear solvation case [142].

In the particular case of the linear solvation when the magnitude u; is
Gaussian, the cumulants of the order higher than the second are equal to
zero, and expansion (99) comes abruptly to an end after the first term. In
the last case Eq.(99) reflects the fluctuation-dissipation theorem [142].

Eq.(99) expresses the first moments of nonequilibrium spectra by the
derivatives of the equilibrium absorption spectrum of a solute molecule in
solution F(w) which can be experimentally measured. The second par-
tial central moment can be also presented in the form similar to Eq.(99).
However, the formula for this moment is more complex and therefore is not

presented here. In general, the corresponding formulae become complicated
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when the order of a moment increases. However, formulae for high order
moments can be written in a more compact form if one refrains from using
Fe(w) [142]):

75(7) = Ty e () exp () Fons (o — o = /)y (101)

Eq.(101) for j = 2 can also be presented in the form of a nonequilibrium
average [142]:

702 (7) = ey () Pans (&0 — s = s ) (102)

Eqs.(101) and (102) express the partial central moments of nonequilibrium
spectra by the ”intramolecular” absorption spectrum F,p;. It cannot be
measured directly for a molecule which is in a polar solvent. However, the
intramolecular spectrum Fi,p(w) can be determined as the spectrum of the

same solute in a nonpolar solvent [201].

9.4 Broad and featureless electronic molecular spec-
tra

Let us consider the particular but very important and widely-distributed case

of very broad and featureless electronic spectra of solute organic molecules
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in solutions. The examples are LDS-750 [65], phtalimides [202] and many
others. For such molecules the square root of the second central moment of
the equilibrium absorption spectrum is rather large \/o, ~ 1700em™" . As
a result, the formulae for the ”partial” central moments for the spectra of

such molecules are strongly simplified [141, 142]:

b?s

Tnz (T) = b—lsh_”@?ﬁ(ﬂ exp ()2 (103)

Eq.(103) can also be considered as a generalization of the fluctuation-dissipation
theorem for the nonlinear solvation case [142].

We can also rewrite Eq.(103) in the form of the nonequilibrium averages
[141, 142]:

72 (r) = W7 (W (7)) (104)

where w3(7) is determined by the motion in the excited electronic state 2,
however, the averaging is carried out with respect to the ground electronic

state 1.
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9.5 Time resolved luminescence spectroscopy

The time shift of the first moment of the luminescence spectrum is charac-

terized by the equation [169, 144]:

L (r) = (we (1)) = (wp (20) (105)

where (w, , (7)) = [0, w1 Fy o (w1,w,T)dwy is the first moment of the ab-
sorption («) or emission (¢) spectrum.

The quantity Cy,(7) can be presented in the form [141, 142]:
Co(T) = 012(7)/12(0) (106)

where the normalized first moment of the TRL spectrum o745 (7) is determined
in particular by Eq.(99) for j=2. One can see that for the case of nonlinear
solvation, the first moment of the TRL spectra o132 (7) is determined not
only by the correlation function of the second order, but also by cumulant
averages (u4(0)uz(7))e2 higher than the second (n > 1).

Computer simulations [169] calculated the normalized correlation func-
tion in the ground electronic state ({@,(0)uy(7))1/(u3(0))1), in the excited

electronic state ({u,(0)us(7))2/{u3(0))2), and the nonequilibrium response

function C(7) ( ~ (uz(7))1) which was assumed to correspond to the exper-
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imental measurements of 012 (7). One can see that the first normalized mo-
ment o5 (7) depends on the equilibrium absorption spectrum of the solute
molecule in solution, F°(w) and in general is not reduced to the nonequi-
librium average (uz(7))1. However, for the case of broad and featureless
electronic spectra and for excitation near the Franck-Condon frequency of
the transition 1 — 2 [141, 142], the "partial” central moments of the emis-
sion band o1 (7) almost do not depend on F(w) , and are expressed by the
nonequilibrium averages (Eq.(104)). Thus, the nonequilibrium average ap-
proximately describes the first moment of the TRL spectrum only in the case
of broad and featureless electronic spectra of a solute molecule in solution

for the excitation near the frequency of the Franck-Condon transition.

9.6 Time resolved hole-burning study of nonlinear
solvation

Let us consider the time resolved hole-burning experiment [85]. Similar to
TRL studies [169, 144] (see Eq.(105)), one can characterize the time shift of

the first moment of the difference absorption spectrum (Eq.(69))

(Waa (1)) = /OOO wiAa (W) — w) dwy (107)
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by the equation:

 (na (7)) — {an (09))
Cao (7 = 100 (0))— (wae (20)) (108)

where w; = w' 4 w. The quantity (wa, (7)) can be expressed by the first mo-
ments of the non-equilibrium absorption («) and luminescence (¢) spectra:
(waa (7)) = (we (7)) = (wa (7).

The quantity Cas (7) can be presented by oy; (7) [141, 142]:
Cao (7) = [012(7) + 011 (7)]/[012(0) + 11 (0)] (109)

According to Eqs.(99) and (106), the term C,(7) provides information on
solvation dynamics in the excited electronic state, while Ca, (7) provides
both the solvation dynamics in the ground and in the excited electronic states.
We will show how the solvation dynamics in the ground electronic state can
be found by the time resolved hole-burning spectroscopy. Let us assume
that we have determined both o5 (7) and o2(0) by TRL spectroscopy. By
measuring the dependence Ca, (7), we can determine the function oy (7),
describing the dynamics in the ground electronic state. Using Eq.(109), one

can show [141, 142] that
011 (7) = Caa (7)[2012 (0) — wst] — 012 (0) Cy (7) (110)
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where wy; = h™" ((us)1 — (uy)9) is the solvent contribution to the Stokes shift

between the equilibrium absorption and emission spectra.

9.7 Stochastic approach to transient spectroscopy of
nonlinear solvation dynamics

In this subsection we show how to use a stochastic approach to the calculation
of the spectral moments of the non-equilibrium absorption and luminescence
of a solvating molecule [142].

We consider u; (7) as a random function of a parameter 7. Equilib-
rium averages in formulae (99), (101) and (103) have the following form:
(1 (uj(7))ha(u;(0))); where ¢y 2 (u;) are given functions of u; . Let us de-
note u;(7) = wu, and u;(0) = we. Then the equilibrium averages under

discussion can be presented in the form [203, 204]:

(r(ur)a(uo)); = [ [ duoducws(uwo)og(urr, wo)s(ur)a(ue) - (111)

where w;(ug) describes a law of probability in electronic state j, and v;(w,|7, ug)
is the density of the conditional probability that u takes the value ., at time
7 if it takes the value ug at time 0.

It is worth noting that v in Eq.(111) is a stationary random function, and
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therefore, w;(ug) does not depend on 7, and v; depends only on one time
variable. This is due to the fact that in our formulae the average is carried

out with respect to the same electronic state as the determination of value

Thus, in order to calculate averages (Eq.(111)), we must know the corre-
sponding conditional probability v;(u,|7,ug). It has been calculated for the
rotational diffusion model in the case of nonlinear solvation [142].

Let us consider the nonequilibrium averages (Eq.(104)) which appear in
the theory of broad and featureless electronic molecular spectra (Subsec.9.4).
Using permutations under the trace operation, we can present Eq.(104)) in

the form:
oz (T) = BT (ug (7)1 = A" Tr{(us — (us)2)" pas (7)} (112)

where pas (7) = exp (—%Wzr) Pl exp (%Wgr) is the density matrix describ-
ing the evolution of the solvent nuclear degrees of freedom in the excited
electronic state 2 for the specific initial condition: pas (0) = pf,, i.e. it coin-
cides with pj, for 7 = 0.

The classical analog of pas (7) is a one-dimensional distribution w; (us, 7)
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for a nonstationary random process for the initial condition:
wa (s, 0) = wy (us) (113)

where w; (us) describes the stationary probability in the ground electronic
states.
Thus we can write the value 0,3 (7) corresponding to Eq.(104), in the

form:
o (7) = A" / (s — {t5)a)" w3 (g, 7) duts (114)

where w; (us,t) must be determined for nonstationary conditions which cor-
respond to the ground state for ¢ < 0, and the excited one for ¢ > 0.

Sometimes finding ws (us, t) for suitable initial conditions is an easier task
than finding the conditional density vy(u,|7, uo) for arbitrary ug [142].

The general formulae presented in Subsections 9.3, 9.4 and 9.7, have been
applied to the calculation of the spectral moments of a molecule in a model
solvent [142]. According to Debye [205-207], the solvent was considered to
be composed of point dipoles d. Fach dipole undergoes rotational Brownian
motion as a result of interactions with a bath. The quantity u, that is the
difference between interactions of the solvent with the excited state solute
and with the ground-state solute, can be represented in the form: wu, =
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ol 2(:) - Wl(:)) where WQ(:) (or WQ(:) ) denotes the interaction between the
solvent molecule labeled n and the excited-state (or ground-state) solute.
The value ug for the interaction of the solute with a single solvent molecule
isu = —d- (E(z) — E(l)), where EU) is the electrical field created by a solute
in the electronic state j.

In order to avoid nonprincipal complications, we considered that the elec-
tric field created by a solute in both electronic states 1 and 2, is directed along
the same straight line, but can differ by its value or the direction with re-
spect to this line. In this case, one can write: u' = —d - (E(z) — E(l)) cosfl =
—dFEy; cos 8, where 8 is the angle between the dipole and the direction of the
field E? | and E® is the value of the field EM) with a sign plus or minus de-
pending on the orientation of E® with respect to E?), and Ey = £ — EW),

A long-time solution for the model under consideration in a strong elec-
trical field has been obtained in Ref.[142].

Fig. 22 illustrates nonlinear solvation behavior for the solute which does
not create a field in the ground electronic state (E(l) =0,Fy, = F® ).
Fig. 23 shows the time-dependent first moment of the difference absorption

spectrum for time resolved hole-burning (HB) experiments. We can see that
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in the general case the signal is an intermediate one with respect to the
dynamics in the ground and in the excited electronic states (Fig. 23a). How-
ever, we can obtain a signal that mimics either the excited or the ground

state dynamics by tuning the excitation frequency (Figs. 23b and 23c).

9.8 Summary

In this section we have shown that by using different methods of spectroscopy
with pulses long compared with electronic dephasing and tuning the excita-
tion frequencies, one can investigate separately solvation dynamics in the
ground or in the excited electronic states, and consequently, study nonlinear
solvation.

We used the theory [67, 150] developed for pulses long compared with
electronic dephasing (¢, > T"). In this regard, the question arises whether
the condition ¢, > 7" is necessary for a separate study of solvation dynamics
in the ground or in the excited electronic states. Following the considerations
of this section, the pump pulses must be sufficiently long in order to provide
a definite position of a spike and a hole on the potentials of the excited or

ground electronic state, respectively. One can formulate the corresponding
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/

condition as follows: ¢, > 05,77 where oy, is the contribution of solvation
processes to the second central moment of an absorption (or emission) band
(02_51/2 ~ 1075 [66, 67, 99]). For some cases the criterion ¢, > 02_51/2 is
weaker than ¢, > T’. However, the delay time 7 between the pump and the
probe pulses must be larger than irreversible dephasing time T”. In reality,
short pump pulses £, < 7" induce a polarization grating whose attenuation
is determined by 7", i.e. the relaxation of the non-diagonal (with respect to
electronic indices) density matrix pa;. The relaxation of pg; is determined
by the evolution of the system both in the excited and ground electronic
states. Therefore, the creation of a polarization grating is an unfavorable
situation which interferes with the separate study of dynamics in the ground
and in the excited electronic states. The polarization grating relaxes for
delay times 7 > T’. Thus, the analysis, conducted in this section, is limited
to experiments performed with pulses ¢, > 1075, and delay times between
the pump and the probe pulses 7 > T".

We have used a new approach for the calculation of the four-time cor-

relation functions in nonlinear spectroscopy of nonlinear solvation when the

breakdown of the linear response of the solvation dynamics occurs. In this
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approach the thermal averaging is carried out in the same electronic state as
the system evolution calculations (equilibrium averages).

This approach has a number of advantages. First, stochastic models can
be used for the calculation of the corresponding averages in Eqs.(93),(94),(99),
(101) and (103), while the information concerning the time resolved Stokes
shift is preserved. In contrast, the application of stochastic models to the
calculation of My(71,72,73) (Eq.(91)), where classical trajectories are deter-
mined in the excited electronic state, and thermal averaging is carried out
in the ground electronic state, cannot be used to model the time-resolved
Stokes shift. Secondly, the computer calculation of the equilibrium aver-
ages consumes less computing time than that of the averages when classical
trajectory calculations and the averaging are carried out in different elec-
tronic states [208]. Finally, Eqs.(93),(94) and (99) provide simple analytical
expressions for the important particular case (Subsec.9.4).

We would particularly like to note Eq.(101) which seems to us most per-
spective in terms of practical usage. It was used in Ref.[142].

We have investigated the correctness of the description of the TRL spec-
trum first moment by the nonequilibrium average which is commonly used
for nonlinear solvation studies [169] (Subsec.9.5). We have shown how sol-
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vation dynamics in the ground electronic state is obtained by time resolved
hole-burning spectroscopy (Subsec.9.6).

We demonstrated the use of stochastic models for calculating the spectral
moments of the non-equilibrium absorption and luminescence of a solvating
molecule (Subsec.9.7). We have formulated two approaches. The first is
more general and corresponds to a model of a stationary random process.
It can be realized with the four-time correlation functions related to def-
inite electronic states. The second approach corresponds to a model of a
nonstationary random process, and can be used for the calculation of the
nonequilibrium averages which appear in the theory of broad and featureless
electronic molecular spectra. We applied our results to the Debye model of
a rotation diffusion for the case of nonlinear solvation in Ref.[142].

Let us discuss an experimental study of nonlinear solvation effects. Large
nonlinear effects have been found in many kinds of solvents with hydrogen
bonds by using molecular dynamics simulations [169, 194, 195]. The detailed
studies of Ladanyi and coworkers [169, 194] have shown that the breakdown of
the linear response occurs when substantial differences exist between the pat-
tern of solute-solvent hydrogen bonding in the initial and final solute states.

Kumar and Maroncelli have found nonlinear effects for the solvation of rela-
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tively small solutes of the size of benzene in methanol [209]. Their finding was
consistent with measurements of the solute dependence of solvation dynamics
in l-propanol [210]. Simple aromatic amines (aniline, l-aminonaphthalene,
2-amino-anthracene, l-aminopyrene and dimehtylaniline) showed behavior
which was inconsistent with expectations based on non-specific theories of
solvation dynamics [210]. The agreement between theory and experiment is
improved by taking into account the effects of the solute self-motion [211].
According to Ref.[210], the key features of these solutes that differentiate
them, are: 1) that the hydrogen-bonding effect is localized to a single inter-
action and 2) that partly as a result of this localization, the perturbation
caused by the Sy — S} transition causes the response ‘driven’ in a nonlinear
fashion.

Thus, the simple aromatic amines under discussion can show the nonlinear
solvation behavior, therefore, they can be used in experiments concerning
the nonlinear solvation study. Diatomic molecules also show large nonlinear

effects due to solute motion [212].
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A Appendix

Let us consider the case of freely orientating molecules. In order to calculate
(Gab(V)04c(f0))or, we shall expand the tensor ,,(2) (or 044(Qs)) by irreducible

parts (i.e. parts that transform only by themselves at any coordinate trans-

formations):
Gap(V) = 60(0)bap + 05,(7) + 50(7) (115)
where
O/ 1 . I, .
G (V) ==Y Gu(V)=Tro (116)
3 < 3
is a scalar,
s o L. o . . 0/
Tu(V) = 5(Ga(P) + G0a(V)) — & (7)das (117)
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is a symmetrical tensor, and
Gu(V) = 5(Gab(V) = G2a (1))

is an antisymmetrical tensor.

One can show that the following values: ¢°(7),

and

(118)

(119)

(120)

are invariants of the tensor & ,(7/)(i.e. values that are constants for ten-

sor in any coordinate system). We can express any orientation average

(G4(7)54:(f0))orby the tensor invariants &°, h, and h, :

(007 ()er = )5 ) 7
(300 00 (P))r = 6°(016°(7) — 1l )
(G )60(7))or = 15T, 7) + i, )
1 1

(s ()5 (7))or = (il 7) — gﬁa(/jv V)

All the other averages are equal to zero.
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As an example, let us first consider a molecule, where the direction of its
dipole moment depends on the excitation of some (intermolecular) motions

[99]. In the "molecular” frame of references (x'y’z")

D (Qs) = Docos(o_st):Docos(Zansj), (125)

Dy'(QS) = DOSin(&Qs)sz’ =0 (126)
We obtain for this model

5(7) = (D3/3)8(7), ha(fi. 7) = 0. (127)

13(@ + §)5(d — ) + Z5()3(7)] (128)

where §(7) is the é-function of Dirac.
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