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The interaction of intensive ultrashort light pulses with electronic transitions in a strongly broadened vibronic system with non- 
Markovian relaxation (e.g., a complex molecule or an impurity center in a crystal) is considered theoretically. The problem of 
calculating the non-linear polarization in such a system has been solved for the case of Gaussian-Markovian modulation of the 
electronic transition frequency. Similarities between the situation studied and electronic transfer reactions are discussed. Gener- 
alization of our approach to the quantum character of a system of optically active low frequency vibrations modulating electronic 
transitions is also studied. A generalization of the theory to pump-probe femtosecond experiments for the case of sufficiently 
intensive pump pulses has been made. 

1. Introduction 

During the last few years experimentalists have been successful in the generation of ultrashort pulses (USP) 
by dye lasers [ l-31 which have been the basis for the development of the direct methods for the femtosecond 
spectroscopy of complex molecules in solutions [ 3-61. In this connection the calculations of electronic transi- 
tion cubic polarization in a strongly broadened vibronic system with non-Markovian relaxation (e.g., a complex 
molecule, an impurity center in a crystal) in the field of USP of finite duration acquired high priority [ 7- 12 1. 
Let us consider the pump-probe femtosecond experiments with complex molecules [ 4,5 1. In hole-burning ex- 
periments with femtosecond resolution [ 5 1, the sample is excited with a 60 fs pump pulse, and the absorption 
spectrum is measured with a 10 fs probe pulse that is delayed relative to the pump pulse by a variable time T. 
The difference absorption spectrum at w’ + o is determined by [ 8,13 ] 

Aa w -Im[PNL(w’)/&(w’)] , (1) 

where 

03 

PNL( w’ ) = s dtPNL+(t) exp(io’t) 

is the Fourier transform of the non-linear polarization, 

C&JO’)= 5 dt$,(t-r)exp(iw’t) 
--Q1 

is the Fourier transform of the probe field amplitude, 

E,,(t)=E&(t)+E;(t)=f(g,,(t)exp(-iot)+c.c.. 
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In experiments [ 41 in the “pump-probe” variant the dependence of the transmission change AT of dye solu- 
tions on delay time 7 between two UPS is measured. This dependence AT(T) is given by [ 111 

00 

AT(r)- -Re dtE;(t-r) $ [PNL’(t) exp( -iwt)] . (2) 
-co 

From eqs. ( 1) and (2) it follows that calculating non-linear polarization is necessary for determining the signals 
in these experiments. 

Furthermore, phase modulation and duration of USP during transmission through a saturable absorber and 
an amplifier of a femtosecond dye laser are also determined by polarization [ 14 1, 

b(l, f)-cqO,f’)-P+(O, f) , 

where 1 is the sample thickness, &‘( 0, t’ ) and b( 1, t’ ) are the field amplitudes of USP before and after interaction 
with an absorber (amplifier), respectively. The USP phase modulation in a saturable femtosecond laser ab- 
sorber has been studied in ref. [ 141 using electronic transition cubic polarization of a strongly broadened vi- 
bronic system with non-Markovian relaxation calculated in refs. [ 15,161. The significance of such an investi- 
gation is due to the importance of phase modulation in USP generation [ 1 ] and commensurability of the duration 
tr, z 50- 100 fs of USP generated in a laser with the vibrational relaxation time t, of dyes [ 7,9,11,15,16]. 

At the same time the four-photon approach used in refs. [7-l 2,141 is inadequate in a number of cases. These 
are the presence of strong fields in USP dye lasers [ 21 and application of intensive USP to femtosecond spec- 
troscopy [ 6 1. 

In this work the solution of the problem of calculating non-linear polarization of electronic transitions in a 
strongly broadened vibronic system (corresponding to the “slow modulation” limit according to Kubo [ 17 ] ) 
in a field of USP of finite duration has been obtained. 

This problem is similar to that of calculating chemical reactions under strong interaction [ 18,191. Let us 
consider a molecule with two electronic states n = 1,2 (fig. 1) whose Hamiltonian is 

Ho= $ In>[~%+~n(Q)l(nl 9 &>E,. 

The molecule is affected by electromagnetic radiation, 

E(t)=E+(t)+E-(t)=f&(t)exp(-iwt)+c.c.. 

Fig. 1. The adiabatic potentials cm-responding to electronic states 
I,2 and their photonic “replications” l’, 2’. 
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Here En is the energy of state n, W,(Q) is the adiabatic Hamiltonian of a reservoir (R) (the vibrational subsys- 
tems of a molecule and a solvent interacting with the two-level system under consideration in state n). It is 
possible to describe an electronic optical transition as electronic transfer reaction between photonic “replica- 
tion” 1’ of state 1 and state 2 #’ (or between state 1 and photonic “replication” 2’ of state 2) induced by the 
disturbance V(t)= -D2,-E(t)/2. Here D2,=D :2 are the electronic matrix elements of the molecular dipole 
moment. The problem of electron transfer for strong interaction has been solved by the contact approximation 
[ 18,191, according to which the transition probability is taken as proportional to S( Q-Qo) where Q0 is the 
intersection of terms. The contact approximation enables one to reduce the problem to balance equations [ 18,19 1. 

A similar approximation can be used in the problem under consideration. It is possible to describe the influ- 
ence of the vibrational subsystems of a molecule and a solvent on electronic transition within the range of 
definite vibronic transition O-+k related to high frequency optically active (OA) vibration ( x 1000-l 500 cm- ’ ) 
as a modulation of this transition by low frequency (LF) OA vibrations {o,} [ 7,9,11,14-161. In accordance 
with the Franck-Condon principle an optical electronic transition takes place at fixed nuclear configuration. 
Therefore, the probability of optical transition is the highest near the intersection Q, of “photonic replication” 
and the corresponding term (fig. 1) and rapidly decreases as 1 Q- Q0 1 increases. Quantity U, (Q) = W,(Q) 
- W, (Q) - ( W,- W, ) , is the disturbance of nuclear motion during electronic transition. Here ( ) “= 
Sp, ( . ..pRn ) denotes the trace operation over the reservoir variables in electronic state n, 

PRn=exp(--pW,)lSp,exp(-BW,), /3=1/&T. 

Electronic transition relaxation stimulated by LFOA vibrations is described by the correlation function 
K, (t) = (u, (0)~’ (t) ) , of the corresponding vibrational disturbance with characteristic attenuation time t, [ 7- 
12,15,16]. 02,tf XP 1 for broad vibronic spectra satisfying the “slow modulation” limit, where azl = K1 (O)fi-’ is 
the LF vibration contribution to a second central moment of an absorption spectrum. According to ref. [ 91 (see 
also ref. [ 15 ] ) the following times are characteristic for the time evolution of the system under consideration: 
0% “2<T’~t1,,wherea~l’/2andT’=(t,/u2,) ‘I3 are the electronic transition times of reversible and irreversible 
dephasing processes, respectively. Their characteristic values are a~‘/* x 1 O- ‘* s, 7” x 2.2 x 10 -I4 s, t, z 1 O-l3 s 
for complex molecules in solutions. The inequality & >> 7” implies that optical transition is instantaneous and 
the contact approximation is correct. Thus, it is possible to describe vibrationally non-equilibrium populations 
in states 1 and 2 by balance equations for the intensive pulse excitation (pulse duration tP > T’ ). This procedure 
allows us to solve the problem for strong fields. 

In doing so one cannot take into account coherent effects in pump-probe experiments when the pump and 
probe pulses overlap in time. Therefore, applications (section 4) will be restricted to cases where these pulses 
do not overlap in time. The case of classical nature of the OALF vibration system is considered in section 2. 
Generalization for the quantum case is made in section 3. 

2. Classical nature of the LF vibration system and the exponential correlation function 

We suppose that fro, K k,T. Then {wJ} is an almost classical system and operators W,, are assumed to be 
stochastic functions of time in the Heisenberg representation. U, can be considered as a stochastic Gaussian 
variable. We consider the case of the Gaussian-Markovian process when K, ( t) /K, (0) zz y, (t) = exp ( - 1 t ( /t,). 
The equations for the density matrix of this system can be obtained by [ 1 B-201 

$pij(ay t)=-iih-‘[&(a, ~)-D.E(~),/I(cx, t)]ij+Lupu(a, t) , (4) 

*’ The wavefunction of the system can be expanded in Fourier series due to the periodic dependence of the disturbance on time: 
~(x, t) = X:__,~~(.K, t) exp[ -i(e+nw)t], where q,,(x, I) is a slowly varying function. Photonic “replication” 1’ corresponds to the 
ground state wavefunction for n = 1. 
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where i, j= 1,2, (Y = - u, /fi, and 

L,,=t;’ 1+ (a!-6,&J 
( 

a a 
a(a-6,220s,) +a2l a((~-d,~~c)~~y > p 

S, is the Kronecker symbol, 0~~ the Stokes shift of the equilibrium absorption and luminescence spectra. The 
partial density matrix of the system pJ( CX, t) describes the system distribution in states 1 and 2 with a given 
value of cy at time t. The complete density matrix averaged over the stochastic process which modulates the 
system energy levels is obtained by integration ofp( a, t) over cy, 

Formulae for Lz, (or Lr2) are not given here because it is not necessary. Operator L2, describes the relaxation 
process that is intermediate between the relaxation process described by operator L, , and the one described by 
Lz2. According to the fact that 021~‘~ < T’ CK t (see also ref. [ 19 ] ), the characteristic variation time of a, ((r, 
t ) =p21 (a, t ) exp ( iot ) is t N T’ , which is substantially smaller than the vibrational relaxation time t, of popula- 
tions ph ( (Y, t ) . Therefore, we can approximately write 

$2,(a, O+i(W2l --w-a)B,(e 0% &41.B(Mc~ 0, (5) 

where A( a, t) =p,, (a, t) -P~~( (II, t), 02, is the frequency of Franck-Condon transition l-2. Using eq. (5 ) we 
obtain the approximate balance equations from (4) for excitation by pulses with duration tP =B ( f,/a2, ) *13, 

%p,((y,t)=(-l~~-2(~/2)S(021 -w-a)~D21~B(t)~2A(a,t)+L,,pi(a,t). (6) 

Eq. (6) corresponds to the contact approximation [ 181. 
The Green’s function of eq. ( 6 ) , 

Gii(~,~‘,~)=[2~~(~)l-1~2exp~-[(~-~,~ws,)-(~’-~,~~~,)n(~)l2/2~(~)} , (7) 

gives the conditional probabilities for a stochastical Gaussian process. In expression (7) a( t ) = a2, [ 1 - & (t ) 1. 
Integration of eq. (6) is achieved by Green’s function (7) for the initial conditions, 

pjj(CX, 0)=?Zj(21cO~~)-1’2 eXp[ - (CX-62jO~,)2/2021] , t2, +tl2= 1 . (7’ ) 

We obtain 

A(a,t)=A(a,0)--b,(~21)(2mr21)1’2 dt’J(t’)A(o,,-w,t’) i Gj(a,co2,-qt--t’), 
I 
0 

j=l 
(8) 

where a.( 02, ) is the cross section at the absorption band maximum (without averaging over molecule orienta- 
tions), J(t) is the power density of exciting radiation. 

The positive frequency component of the polarization is expressed in terms of A( a, t), 
I co 

P+(t)=ND12~21(t)= %ldr, 1 daA(a, t-7,)D2,~~(t-7,) exp[-i(wzi -co-a)r,] , (9) 
0 -co 

where N is the number density of particles in a system. The substitution of eq. (8 ) in eq. (9) yields the following 
expression for the linear (L) and non-linear (NL) contributions to the polarization: 
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P+(f)= &ND,, jdr, D*, .B(t-7,) exp[ - frh 7: -i(W21 -W)711 [n, -n2 ew(iw,rl )I , 
0 

I 

~NL+(t)=-~ND,2~~(~~,)(2~q,)1~2~drJ(~-r)A(~~,--w,f-7) 
0 

37 

(10) 

I 

X d7lDzr-&(t-7,) 1 exp{-$o(t)7:-i[Oj(7)-~]7i}. 
s 
0 

j=a,p 
(11) 

Here wj(t)=Wzl-~j~~st+(O-_W2,+~~~st)W,(t), the quantity A(o *, -0, t) is the solution of the integral 
equation which is obtained from eq. ( 8 ) for (Y = wzl - w, 

A’(t)=l-o,(wzl) drJ(r)A’(r)R(t-7)) 
s 

A’(t)=A(w2, -w, t)/A(wz, -w,O) , (12) 
0 

where 

R(t)= [ 1-w:(t)]-“2 j&exp{- [ W-Wj( t) 12/20(t)} . 

Eq. ( 12) is the main result of this work. The summand in the expression for R( t-7) corresponding to j=a 
describes the contribution of induced absorption and the one corresponding to j= v, describes contribution of 
induced emission. As it follows from eq. ( 1 1 ), the distinction from four-photon calculations consists in substi- 
tuting the solution of eq. ( 12 ) A( w2i - w, t- 7) for the equilibrium value A( w2, - w, 0). 

It is not difficult to solve eq. ( 12) numerically. Also it is possible to obtain a good analytical approximate 
solution to eq. ( 12 ) (see below ) . In this connection one must note that the situation considered in our work has 
two essential distinctions from the one for electronic transfer reactions [ l&l9 1. They are ( 1) the time-depen- 
dent disturbance V(t) = - D2, .dp( t) /2 (in contrast to a constant disturbance V=const. in refs. [ 18,191); (2) 
the necessity of obtaining the solution of eq. ( 12) which holds for t-f.. The abovementioned distinctions do 
not permit us to use the methods of refs. [ 18,191. Therefore, we act as follows. We express A’ (t) in terms of a 
power series in J( 7): A’ (t) = 1 + 1 L, A’(“) (t). The formula for any A’(“) (t) can be easily obtained using eq. 

(12), 

(13) 

Substitution of eq. ( 13) into eq. ( 11) permits a non-linear polarization to be calculated in any order 2n+ 1 in 
powers of field. We construct the Pad6 approximant [O/ 1 ] [ 2 1 ] for A’ ( t ) using A”’ ) ( t ), 

-1 

. (14) 

Formula ( 14) coincides with the perturbation solution for small J, however, in contrast to the latter eq. ( 14) 
coincides with the exact solution for any J within the ranges of both short and long times t and therefore it is 
rather preferable. Calculations [ 221 show that solution ( 14) practically does not differ from the exact one even 
for comparatively large values of the saturation parameter, a.( w2, )J,,,&,= 3.5 when the perturbation theory 
does not hold. 

Formulae ( IO)-( 14) solve the problem of calculating a non-linear polarization of the system under study in 
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the field of sufficiently intensive USP whose intensity is confined by the condition o, ( o2 1 )J,,,,, -SC ( T’ ) - ‘. 
It is possible to find a criterion of the necessity of accounting for the saturation effect using ( 13 ). It takes the 

usual form for long pulses (2t, 3 t,): a, ( 02, )Jmax - t; ’ . However, if the saturation is realized for sufficiently 
short pulses (2t, < t,), the intensities are essentially smaller: ~~a( wZ, )J,,,,, N ( 2f,,ts) -‘I*. In the latter case due to 
inhomogeneous broadening the saturation is reached in a narrower range than the equilibrium absorption spec- 
trum width. 

Formulae ( lo), ( 1 1 ), which are linear with respect to &( t- rI ), are correct for any duration of the pulse 
corresponding to this field. If the weak probe pulse is merely a copy of the pump pulse shifted in time, as it was 
in the experiments of ref. [ 41, then the dependence of the field &( t - 7, ) on 7I in formulae ( 10) and ( 11) can 
be neglected. We have as a result 

- ~~:~“%(~2* 1 J( drJ(t-r)d(o,, -0, t_7)a-“*(r) 1 W([W--Oj(r) ] [2a(7) ]-1/1,), 
0 i=w 

(15) 

where w(z) = exp ( - z*) [ 1 + i27c-“*J; exp ( t*) dt ] is the probability integral of a complex argument [ 23 1. In 
this case formula (9 ) is reduced to 

c-2 

-w, t)+iP da 
I 

A(a,t) 

a+o--w*, > 
7 

--oD 
(16) 

where P denotes the principal value. 
The first term in the large parentheses of formula ( 16 ) defines an absorption (or a gain) of the field 8( t ) and 

the second one defines a refraction. From eq. (8) it follows that A( a, t) is an even function of (1! for the strict 
resonance interaction with an absorption band (o= 02, ) and the large Stokes shift at. Therefore, the second 
term in the large parentheses of eq. ( 16 ) is 0. In this case, using eq. ( 14), we have with a good accuracy 

P'(t)= zti;NDL*[D2,4Y')1 
d(O,O) 

1 +a,(o21)J; drJ(z)R(t-r) ’ (17) 

It can be easily verified that the alternative way of obtaining the last formula is the perturbation calculation of 
P+(t)uptoterms z PC3) + ( t ) and constructing the PadC approximants of order [O/ 1 ] in J( 7) on the basis of 
this expansion. 

3. General case. Quantum nature of the LF vibration system 

Let us examine the possibility of generalization of the theory of section 2 for the case of quantum nature of 
the LF vibration system (fro, k kJ). We start from the equation for the density matrix of the system [ 15,241, 

Q -=-i&7, 
dt 

whereL=Lo+L,,Lo=fi-‘[Ho, ],&=V’[-DE(t), ] areLiouvilleoperators [24].Weshallobtaintheequa- 
tion for the density matrix p’, diagonal with respect to the electronic subsystem indices (but generally speaking 
nondiagonal on vibrational subsystem indices). For this purpose, we present the density matrix as the sum of 
two parts: p=p’ +pO, where p’ =R’p, p” = ( 1 -R' )p, R’ is the projection operator [24]. In the case under 
consideration 
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R’ - 6 6 my,ny”;m’y’,n’y’” - Inn mm , S”,. a,. S,..,“. ) (18) 

where Latin indices relate to the electronic subsystem, and Greek indices relate to the vibrational one. It can be 
shown that the exact equation for p’ for the initial condition p” (0) = 0 is 

I 

dp’ (t) 
- =-iR’L(t)p’(t)- 1 drL,(t) exp 

dt 
-i(l-R’) i L(f)dt’)(l-R’)L,(t-r)p’(l-r). (19) 

0 I-T 

It is easy to see that the necessary condition for obtaining balance equations of type (6) from eq. ( 19) is to 
neglect L, in the exponential function of eq. ( 19). The possibility of this procedure has been shown in section 2 
for the Gaussian-Markovian process. It is closely connected with the semiclassical (short time) approximation 
[ 25 ] and holds for the case of appreciable Stokes losses ( uZ, t: x= 1). Using also the Condon approach we obtain 
from eq. (19) 

A(t)-A(O)=-~jd~~,D~,.~(t-~~),2~~,Sdrexp(-i~-1W~72) 

0 0 

x{exp[(-l))k-‘ir(c0--0,,-z4/fi)]d(t-r2)+d(t-r2) 

xexp[-i(-l))k-1r(c0--0,,-z4/fj)]}exp(ifi-’Wkr2), (20) 

where A(t) =p,, (t) -Gus, weI= (E2-E,)/ft is the frequency of the pure-electronic transition, u= W2- W,. 
Eq. (20) is an operator integral equation. Integration over 7 in eq. (20) yields 

A(t)-A(O)=- &idr* ID21.dP(t-r2)12k$, exP(-iifr-‘WkQSZ) 

0 

x{~[(-1)k-‘(~-~Oe,-~/li)]A(t-~2)+A(t-~2)~[-(-1)k-‘((W--We,-t(/ti)]}exp(i~-‘W~~2) , (21) 

where r(x) =P/x-ins(x). In a sense eq. (21) is an analogue of eq. (8) but the quantities A(a, t) and A(t) 
appearing in these equations are different. Averaging over all realizations of a random process was made in eq. 
(8) (except the one corresponding to the time section t). This is due to the Markovian character of the modu- 
lating disturbance. In a general case such a procedure is not possible. So averaging is not done in eq. (2 1). It is 
carried out in the stage of calculating observable quantities (polarization in our case), 

P+(t)= &NDI1 jdr, D 2,.&(t-r,)SpR{exp[i(w-w,,+ W,lfi)7,1 exp(-iA-‘W27,)A(t-7,)}. (22) 

0 

Eq. (20) as well as eq. .( 12) may be solved to any order n with respect to quantity 1 D2, *&I 2 which is propor- 
tional to the intensity. As a result the polarization P + (t) (eq. (22 ) ) may be calculated to any order 2n + 1 with 
respect to the disturbing field. Specifically, if the quantity u is Gaussian and the initial conditions are 

p,(o)=njpQ, n,+n,=1, (23) 

one can obtain from eqs. (20)) (2 1) the following expressions for the linear and cubic contributions to a polar- 
ization using method [ 9,11,15,16 ] : 

f 

PL’(t)= $ND,z I 
dri D21*8(t-71) i (-1Y‘-‘sexp[i7l(w-~~)-_2j7:/2], 

0 
j=l 

where cijj = weI + fi- ’ ( u)j is the frequency of the Franck-Condon transition for absorption (j= 1) and emission 
0=2); U2j=fi-2Kj(0) is the contribution of the LF vibrations to the second central moment of the absorption 
(j= 1) or emission (j=2) spectrum, 
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Kjtt)=(ujtO)ujtt) >J 3 uj(t)=eXp(i8-‘Wjt)ujeXp(-ih-‘Wjt) , 

UjEUj(0)=(-l)j+l (U-(tl>j) 9 
I 112 

P(3)+ (t) = - 
I 

d7, D~~*B(z-TI) 5 (-l)j-‘tZj 
0 

j=l 

(25) 

where 

Z~=(-l)j-‘[i(0~j/2)“27~~~(7~)+(O-tij)(2~~j)-1’2]~ 

Zgl=(-l)j-‘[-i($j/2) “27tWj(~2)-(~-~j)(2~2j)-“21 2 Wjvj(Y)=Kj(Y)/KjtO) - (26) 

The fifth-order polarization F)+ (t) may be calculated in the same way. However, we shall not present the 
expression for it here for the sake of brevity. One must carry out averaging over molecule orientations in expres- 
sions (24), (25) also. 

Expression ( 25 ) is the generalization of the expressions obtained in refs. [ 7- 12,14- 16 ] for the case of elec- 
tronically excited systems. This is vital for investigation of the amplifier of the dye laser for USP. 

When the probe pulse is not shorter than the pump pulse one can ignore the dependence of the field dp on the 
fast variable pi and carry out the integration with respect to rI. In this case when ho,< k,T the formula for the 
polarizationP+(t)=pL+(t)+p(3)+(t) ~onve~stofo~ula (15) for~,(~)=~~(~)~d~21=~22.1ndoingso 
one must substitute the equilibrium value d(02i -w,O)ford(y,-o,t-7)ineq.(l5)but~,(t)canbeanon- 
exponential function. In the quantum case (fio, 3E. k,T) it is possible to carry out integration with respect to zI 

only for appreciable Stokes losses and the strictly resonance interaction ( Wj =o). In this case we obtain 
m 

p(3f+(t)=- 8fr3 J 12 -%.D [414(t)]; 
I 

dr2 ]D2~~dP(t-r2)~2((-l~Y-1Re[l/(l-~~(r2))i~2] 
aO 

-(i/x)Re[(l--y/i2(.r~))-‘~2ln(l-2~~(~~)+2~(’c2)(~~(~2)-l)’~2)]), (271 

wherej= 1 pertains to the case of absorbing medium and&2 pertains to the case of amplifying medium. Car- 
rying out averaging over molecule orientations in eqs. (24), (27) and constructing the Pad0 approximant [O/ 
1] similarto (17) byPL+(f) andP t3) + ( t ) we obtain for the case under consideration 

P’(t)=2-3’2iN~-‘(~/~~j)“2~D~2~2~(t)(-l~-’(~j/3) 

I 

x l+$r’(G’Jj) 
( s 

d~2J(t-~~)(Re[l-Y/it(‘t2)]-1’2-i(-l)j-1tX-’Re[(l-~~(zz))-f~2 
0 

Xln(l-21v:~~2~+2~j~~2~(~~(~2~-l~1’2~]~~-’, (28) 

where Q’ (&j ) is the cross section at the absorption band maximum u= 1) or at the emission band maximum 
(j= 2) without averaging over molecule orientations. Expression (28) agrees with the polarization calculations 
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to cubic terms inclusive for small J. Besides, it practically does not differ from the exact solution for the expo- 
nential dependence of vj( ~2) according to the discussion in the end of section 2. Therefore one can expect that 
expression (28 ) is also a good approximation when the dependence w( r2) is more general. 

4. Theory of the pump-probe femtosexond experiments in the case of sutTiciently intensive pump pulses 

Using the obtained expressions we shall generalize the theories [ 8- 111 of pump-probe femtosecond experi- 
ments [ 4,5 ] for the case of sufficiently intensive pump pulses. Such an investigation is important for producing 
intensive USP and using them in femtosecond spectroscopy [ 61. 

Let us consider hole-burning experiments with femtosecond resolution on complex molecules [ 5 1. The theory 
of these experiments is developed in a four-photon approximation in refs. [8-lo]. Using eqs. ( 1) and ( 11) we 
obtain 

co 

Acu(o’)- - 
s 

dt’J(r-t’) 
d(W2i -w, T-f’) [oj(t')-w-o']2 

0 
d'2(t') jZ,pexp(- > 2a(t’) . 

(29) 

Formulae ( 12), ( 14) and (29) generalize the results of refs. [ 8-101 for the case of intensive pump pulses. 
Formula (29) transforms to the corresponding expressions of refs. [8-l 0 ] for the particular case of a weak 
pump pulse when d(w2i-c0, r-t’)~d(0~i-w, 0). It also follows from eqs. (12), (14), (29) that a short 
(t, < t,) pump pulse changes only an amplitude of the hole. Shapes of the two contributions to it (Gaussian 
ones) and the time evolution (broadening _ tr’12 ( r), shifts of centres -w,(r)-wandw,(r)--Oforcontribu- 
tions to Aa(o’ ) from transitions with absorption and emission, correspondingly) remain the same as in the 
case of weak pump pulses. 

However, it is not so for the case oft p x t,. Let us consider the time dependence of hole depth for different J 
when o = w2 1 and ast is large. Using eqs. ( 14 ) and ( 29 ) we obtain for the case of excitation by a square-shaped 
pulse 

x{l+a.(w2,)(Jf,/2)ln[(1+(1-y)‘~2)l(1-(1-y)’~2)]}-‘. (30) 

The time dependence of quantity ACY (w’ = 0) /Acy (0’ = 0) I r=rp for different J is illustrated in fig. 2. 
The expression for A(Y (0’ ) obtained in a four-photon approximation with consideration for OA high fre- 

quency vibrations is given in the appendix. This expression holds for the case of quantum nature of the OALF 
system that is not considered in refs. [ 8- 10 1. 

Let us consider the experimental method of ref. [ 41 for measuring the dependence of a transmission change 
AT of dye solutions on delay time T between two UPS in the “pump-probe” variant. We confine ourselves to 
considering the fast component of the dependence AT( 7) when exciting by intensive USP. This component was 
related to the Franck-Condon mechanism in ref. [ 111. Using formulae (2) and ( 15 ) we obtain 

* OI) 

AT(~)-NIQz 12d~2,) d72 
s 1 

dt 1 $,(t-r)]2Jp(t-r2)4(021 -W, t-r2)o-“2(?2) 
0 -co 

x j=fl_exp(- [QJ-mj(r22)12/20(72)}. (31) 

Formula (3 1) with consideration for eqs. ( 12) and ( 14) is the generalization of eq. ( 19) of ref. [ 111 for the 
case of intensive pump pulses. Eq. (3 1) transforms to eq. ( 19) of ref. [ 111 for the weak pump. Besides, eq. 
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Fig. 2. The dependence of relative hole depth ACX(W’ =O)/ 
ACI(o’=O) 1 .,,ondelaytimer (eq. (3O))fort,=f,u~,(~,)Jt./ 
2=0.l(l)and2.1(2). 

(3 1) takes into account the OALF vibration contribution to the Stokes shift of the absorption and luminescence 
spectra as opposed to eq. ( 19 ) of ref. [ Ill. or( 7z) -+ w2, - mst for 72 X+ t,. Therefore, it is necessary to take into 
account quantity wst when determining comparative contributions of mechanisms of Raman scattering type 
and luminescence type [ 111 to the beats observed after fast component relaxation [ 41. This yields the following 
expression for the quantity x’ appearing in eqs. (22)- (23a) of ref. [ 111 (in terms of this work): 

x’= (w2, -w-2C+s~-ws,)/2~~, ) (32) 

where w,, and S,, are the frequency and the shift parameter of the equilibrium position of the OA high frequency 
vibration at an electronic transition, respectively. 

5. Conclusion 

In this work the problem of calculating non-linear polarization of electronic transition in a strongly broadened 
vibronic system in the field of intensive USP for the case of Gaussian-Markovian modulation has been solved 
(expressions (ll), (12) and (14), (15)). The theory is correct for tp>>r=(t,/~2,)“3 and 

Ga(w21Mnax*=(To-‘. Earlier theories [ 7-12,141 are correct for a,( w2, )J,, e t;’ (2t,> t,) and 
a,( w2, )Jmax *: (2&t,) -I/’ (2t, < t,) (see the discussion following eq. ( 14) ). By this means the range of pulse 
intensities in our theory is increased by tp/ T’ times for 2t, > t. and is increased by (2t&) “‘IT’ times for 2&-c t,. 
For t, - t,, tp/ T’ - t,/ T’ x 4.5 for complex molecules in liquid solutions [ 9 1. This ratio can appreciably increase 
in solid solutions as t, is greater there [ 15 1. 

The formulae obtained by our theory are rather simple. They are not more complex than corresponding ones 
for the four-photon approximation [ 7- 12,141 if one uses the Padt! approximation (see eqs. ( 14)- ( 17 ) ) . But 
our formulae are correct for a significantly larger range of light intensities. So, for example, if one is interested 
only in absorption calculation it is sufficient to know the part of polarization corresponding to the first term in 
the large parentheses of eq. ( 16). Its formula is obtained from eq. ( 17) if one substitutes A( w21 - w, 0) for 
A(& 0). 

In this work a generalization of our approach to the case of quantum nature of the OALF vibration system as 
well as to the classical one with non-exponential correlation function w1,2 (t) has been made. Eqs. (20)) (22) 
and (28) are the principal expressions obtained in this line. 

As an application of the developed theory, a generalization of the theories of refs. [8-l 1 ] of pump-probe 
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femtosecond experiments [ 45 ] for the case of sufficiently intensive pump pulses has been made (section 4). 
The calculation of the transient luminescence spectrum in semiclassical approximation for excitation by intense 
pulses is another possible application of our theory. Actually, knowledge of the density matrix of the excited 
state p22 ( w2, - w“, t) is sufficient for calculating the luminescence spectrum in semiclassical approximation 
[ 29 ] ( w ” is the frequency of the luminescence spectrum ) . The value of p22 ( 02, - co”, t ) can be easily obtained 
usingeqs. (6)-(8), (14). 

The most interesting application of the developed theory is the study of USP generation in dye lasers under 
vibrational relaxation conditions. In the case of pulses of duration tps 100 fs these processes should play an 
important role because vibrational relaxation time ts becomes comparable with the pulse duration [ 7,9,11,15,16]. 
USP phase modulation in the saturable absorber of femtosecond laser was studied by four-photon approxima- 
tion in ref. [ 141 for weak saturation cr*( 02, )J,, p t << 1. However, the most short pulses [ 2 ] are generated in the 
strong saturation condition a, ( 02] )J,,,, p _, t > 1. This condition can be studied by our theory (eqs. ( 11) and ( 12)) 
( 14) and ( 15 ) and (28 ) ). USP phase modulation strongly depends on the nature of the OALF vibration system 
[ 141. Thus, generalization of the developed approach for the quantum case (section 3) is urgent. This study is 
in progress and the first results have been already obtained [ 301. 
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Appendix 

We shall give the expression for Acu (w’ ) obtained within the four-photon approximation. This expression 
holds for the case of quantum nature of the OALF system. Also we take into account occurrence of the OA high 
frequency vibration w,,> k,T/zI. The reason for this is that the holes occur both at the pump frequency and the 
same shifted by 600 cm-’ to the red and to the blue for the case of cresyl violet for rx 0 [ 5 1. Besides, resonance 
Raman measurements have shown the vibration 600 cm- ’ in cresyl violet #2 [ 261. For simplicity we confine 
ourselves to the consideration of the case when & CE 1 and/or the quantity (2r) -’ is much smaller than esti- 
mated relaxation times. Here f is the parameter characterizing a decay of excited states of the OA high frequency 
oscillator [ 15,16,28]. We consider that the pump and probe pulses do not overlap in time. Using [ 15,281 we 
obtain for the case under consideration for t, < t, 

Aa(w.)-Rek,~_,~ . . 
exp[-~~(6_I,k+8_-1,,)8] Tdrl [w(z~)+w(zz)I 

0 

Xexp[-fozlT:-i(Q2,-0--0’)] exp(-ikwr,)+ex , 
where 

02, =o, -Sh(oh-, 

z,={(-l)m[(W-d&, -kmi,)+icrZ,r, Rely,(r)]+o,,r, Imyl,(r)}(2q, +K~)-“‘. 

(33) 

#* Other causes of hole occurrence at frequencies different from the pump frequency are possible when the pump and probe pulses 
overlap in time [27]. 
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We consider the pump pulse to be Gaussian: $( t ) = 8 exp( - 8t2/2). Unlike the results of refs. [f&10], eq. 
( 33) holds for the case of quantum nature of the OALF system when the quantity v1 (‘c) is complex. Besides, 
formula (33 ) is convenient for the analysis of holes in the ranges of vibrational replications (0’ = k q, and 
etc. ). Really, we obtain from (33 ) for classical character of OALF vibrations 

(34) 

where 

F??(r)= [2xo’(r)]-“*exp{- [o>?(r)-o-o’]*/2a’(r)} (35) 

are the contributions from the absorption (F&(T)) and the induced emission (F&( 7)) processes to the ob- 
served holes with the central frequencies 

o&(r)=@,, +k0,,+v,(?)(0-ti)2, --k0,,)/(l+K2/2~2,) 

and 

respectively, and with the halfwidths N (0’ (7) ) ‘I* where u’ (T) = 02, [ l-W:(r)/(1+ic2/2a2,)].Thesecontri- 
butions correspond to k, 1 terms of progressions relative to the vibration ok,,. o#’ x w- w,,( IT k) for not very 
large Stokes shifts wst and small delays 7a t, when w, (T) x 1. In this case we obtain from eq. (34) for hole 
shapes in the excitation range (w’ N 0) and also in the vibrational repetition ranges (w’ _ z!z ,x,,) 

OL) ,~fi’l”,l 
Aa(w’ NCL)~) N 1 

(o-f&, --lo,,,)* 
I=-, II]!lI+l]! 202, +K* 

F?+ ,,I 

(w-ti2, -h)* 

202, + K* 

FQ_,_,,/, 

Aa(w’ 
OD sj,kl+lk+,I 

N-Wh)w kc_, Ikl!Jk+ll! c 
exp _fiwhs_,kb_ ]w-ti*, -c%(k+ ’ ) I* 

202, + K* 

J’” 
k,k+ I 

I shkl+l,-kl 

+ ,=c_, Il-kl! 
exp _ficL)hs_,Ikp_ [w-41 -wdl-k)l* 

2fr2, +K* 
F&-k. 

(36) 

(37) 

(38) 

In particular, it follows from eq. (33) that the induced emission (the second term in the right-hand part of (38) 
for k= 1 that is proportional to Fy,, ) gives a main contribution to a hole in the range N w-c_+, when the excitation 
is in the range w%C~)~, . As relaxation processes advance, the center of the hole described by FP,,( 7) (see the 
expression for w $, ( 7) ) tends rapidly to the corresponding frequency of the luminescence spectrum Q2, - ws, - w. 
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