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We study decay of two-exciton states of a J-aggregate that is collective in nature. We use mathematical
formalism based on effective non-Hermitian Hamiltonian suggested in nuclear theory. We show that
decay of two-exciton states is strongly affected by the interference processes in the exciton–exciton
annihilation. Our evaluations of the imaginary part of the effective Hamiltonian show that it exceeds
the spacing between real energies of the two-exciton states that gives rise to the transition to the regime
of overlapping resonances supplying the system by the new collectivity – the possibility of coherent
decay in the annihilation channel. The decay of two-exciton states varies from twice bimolecular decay
rate to the much smaller values that is associated with population trapping. We have also considered the
corresponding experiment in the framework of our approach, the picture of which appears to be more
complex and richer than it was reasoned before.
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1. Introduction

Collective mechanism of excitation of linear molecular
J-aggregates determines their unique nonlinear optical properties
[1]. Among them the N-fold enhancement of the spontaneous
emission rate and the N2 scaling of the cubic hyperpolarizability,
where N is the number of molecules in the aggregate. The reason
is the collective (excitonic) character of aggregate eigenfunctions.
The collective mechanism also results in a bistable behavior of
molecular J-aggregates [2,3], and dissipative solitons [4,5] that
arise in these structures under resonant laser excitation. These
solitons are nanosized structures, which are localized almost
within the region of a single molecule, which opens up possibilities
for creating subminiature memory cells.

The bistability and dissipative solitons predicted are strongly
affected by the process of excitonic annihilation, which plays a role
with increasing pump intensity [6–9]. Exciton annihilation in
molecular crystals was studied in Refs. [6,7], and in dye
J-aggregates in Refs. [10–12] experimentally and [13,14] theoreti-
cally. In Ref. [15] the anharmonic oscillator approach was
developed to model exciton annihilation in pigment-protein com-
plexes. Consider two-exciton excitation of a molecular aggregate.
The scheme of the exciton–exciton annihilation process through
a third molecular level [13,14] includes two steps. In the first step,
one excited molecule goes to the ground state gj i while another
excited molecule passes to the third level fj i (due to the energy
conservation). The second step is the radiationless relaxation of
the third level fj i to the ground gj i and excited ej i states of the
transition of interest. It is assumed that the third level fj i is vibro-
nic in its nature and decays very rapidly transferring its energy to
the excited ej i and ground gj i levels with the rates Cfe and Cfg ,
respectively.

In Ref. [3] an ensemble of molecular aggregates in a thin film
was considered using an effective four-level scheme, and in Refs.
[2,4,5] J-aggregates were described using a local field approxima-
tion [16], in which a chain of molecules is described by a system
of Bloch equations for one-particle density matrices. In this case,
the interaction between molecules is derived using the classical
expression for the retarding interaction between a system of
dipoles by which molecules are modeled. In addition, the above
mentioned interaction that leads to exciton–exciton annihilation
is also introduced into the system (usually phenomenologically).
As a rule, in the system of equations obtained in this way, only
two particle interactions are taken into account, which are
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presented in the factorized form, i.e., without taking into account
correlations between molecules.

However, the system of equations for J-aggregates can also be
derived from first principles. In this case, a hierarchy of mutually
coupled equations for the expectation values of products of
operators that refer to different molecules of the chain arises
[16]. This system contains expectation values beginning from one
particle and ending with N particle expectation values (N is the
number of molecules in the chain, and N � 1). An important aspect
of this problem is that the third level of molecules is a system of a
large number of vibrational sublevels, interaction with which leads
to dissipation of energy and to irreversibility of the exciton–
exciton annihilation process. If this interaction is correctly taken
into account from the first principles, the equations of motion
will acquire a number of multiparticle contributions that describe
the relaxation of the system related to the exciton–exciton
annihilation [17] but that, however, are absent in the purely
phenomenological picture. In Ref. [17] we took the two-particle
expectation values into account directly in the hierarchical system
of equations. In general, taking the interaction with a third
level of molecules into account leads to the appearance not only
of three-particle but also of four-particle relaxation terms in
equations of motion. As a consequence, the exciton–exciton
annihilation processes also result in mixing the optical transitions
in J -aggregates.

Furthermore, equations of Ref. [17] were written in the site rep-
resentation. However, the applicability of the bimolecular theory,
which implies the approach of two excitons before they annihilate,
is questionable [13,14]. Authors of earlier pioneering work [13]
obtained an insight into the possible channels of excitonic
annihilation at low temperatures, when one-dimensional excitons
become localized in the part of the aggregate due to a weak static
disorder. They proposed an alternative channel of excitonic
annihilation that was inversely proportional to the cube of the
localization length. In the present work following Ref. [13] we also
take the localization of one-dimensional excitons in the part of the
aggregate into consideration. However, in contrast to Ref. [13], we
consider rather eigenstates of the effective non–Hermitian
Hamiltonian [18] including the decay due to the exciton–exciton
annihilation, than eigenstates obtained by diagonalization of the
Hamiltonian of a J-aggregate with respect to the dipole–dipole
interaction between its molecules, Eq. (6) below. This is an
important generalization of the theory when the value of the
dipole–dipole interaction between molecules of a J-aggregate
(see Eq. (6) below) Jj j is not much larger than the probability of
bimolecular decay wa (see below). By this means the spectrum of
the problem under consideration should be found with taking
the decay due to the exciton–exciton annihilation into account.
In addition, the exciton–exciton annihilation is described by
non-diagonal relaxation matrix due to both the relaxation of
two-particle variables associated with that of three- and four-
particles variables, and using basis lmj i in which even the
relaxation of two-particle variables becomes non-diagonal. The
appropriate mathematical formalism for the description of this
physics is provided by the effective non–Hermitian Hamiltonian
[18] suggested in nuclear theory that will be used in the present
work. This formalism is highly efficient for the study of collective
states demonstrating various behaviors, the two extreme cases of
which are super-radiance by Dicke [19,20] and the population
trapping [21,18]. At the end of the 20th century it was understood
that the physics underlying super-radiance is much more general
and can find broad applications in various regions of the quantum
world [18].

For our goal, the main lesson is that the quantum states can be
coupled also through the continuum of open decay channels.
Since the continuum coupling determines the width 2a, or the
lifetime s � �h=ð2aÞ, the states become quasi-stationary and can

be characterized by a complex energy, eE ¼ E� ia. Similar to stan-
dard perturbation theory, the efficiency of coupling is determined
by the ratio of the coupling strength to the energy spacing between
the coupled states. If the width 2a is of the order of, or exceeds, the
spacing between real energies E, coupling through the continuum
turns out to be effectively strong. This transition to the regime of
overlapping resonances supplies the system by the new collectivity
- the possibility of coherent decay [18].

The paper is organized as follows. We start with the model in
Section 2. In Section 3 we consider the evolution of the two-exciton
excited states and specify the effective non–Hermitian Hamilto-
nian. Then we present the results of the numerical diagonalization
of the effective Hamiltonian and discuss them, Section 4. In
Section 5 we compare our results with previous calculations and
experiment. In Section 6, we briefly conclude.

2. Model and Hamiltonian

Consider a linear chain that consists of N three-level molecules.
Assume that the lowest state of each molecule is determined by
the state vector gj i, and the energy of this state is Eg . Correspond-
ingly, the excited state will be determined by the state vector ej i
with energy Ee. State vectors mgj i and mej i correspond to a mole-
cule that is located at site m of the chain. Using these vectors, we
can construct the following operators of creation and annihilation
for each molecule: Bm ¼ mgj ihmej is the operator that describes the
annihilation of an excitation in molecule m at level e, and
By
m ¼ mej ihmgj is the operator that describes the creation of an

excitation in molecule m to level e. Furthermore, the upper level
f of a molecule in the system of three-level molecules is a vibronic,
and, to correctly perform calculations, we should take into account
its structure. We will assume that upper level f consists of a series
of sublevels v, which correspond to different vibrational states and
which are characterized by the density of states
qðEÞ ¼PvdðE� Efv Þ necessary for the calculation of the transition
probabilities. As a result, the third state will be determined by state
vectors fvj i with energies Efv where Efv > Ee > Eg . In a similar
manner, we shall also define the following operators:
Dmm ¼ mej ihmfv j, and Dy

mv ¼ mfvj ihmej. In Ref. [17] the processes
of exciton–exciton annihilation were described by the following
Hamiltonian

Hannih ¼
X
k–l
v

VklBkD
þ
lv þ VlkDlvB

þ
k

� � ð1Þ

The two-exciton state corresponding to the excitation of sites m
and n can be written as menej i ¼ By

mB
y
n mgj i ngj i. The energy of this

state will be close to the energy kfvj i of any site k. Therefore, we
shall seek the two-exciton wave function in the form

W ¼
X
m>n

Cmn menej i
Y

k–m;n

kgj i þ
X
m;v

dmv mfvj i
Y
k–m

kgj i ð2Þ

where Cmn and dmv are the amplitudes of the corresponding states.
The evolution of two-exciton wave function W

i�h
dW
dt

¼ HW ð3Þ

is determined by the Hamiltonian

H ¼ H0 þ Hint þ Hannih ð4Þ
Here

H0 ¼
X
m

�hxme;gB
þ
mBm þ

X
m;v

�hxmfv;gD
þ
mvDmv ð5Þ

is the Hamiltonian of free molecules of a J-aggregate,



Fig. 1. Scheme of the interference processes in the exciton–exciton annihilation
described by Cðm�1Þmmðmþ1Þ � V ðm�1ÞmVmðmþ1Þ , according to which two-exciton state
with wave function W � Cmðm�1Þ meðm� 1Þej iQk–m;m�1 kgj i þ Cðmþ1Þm ðmþ 1Þemej iQ

k–mþ1;m kgj i, Eq. (2), can decay due to the interference of processes 1 and 2 shown
by solid and dashed arrow, respectively. In the process 1, the molecule m� 1 goes
to the ground state while the molecule m passes to the third level. In the process 2,
the molecule m goes to the ground state while the molecule mþ 1 passes to the
third level. This is a three-particle process. The next step is the radiationless
relaxation of the third level (shown by wave arrows).
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Hint ¼ �h
X
m–n

Jgegemn By
mBn þ J�gegemn By

nBm
� � ð6Þ

describes the dipole–dipole interaction between molecules where
Jgegemn ¼ J�gegenm . The first term on the right-hand-side of Eq. (6) describes
the excitation of molecule m and deexcitation of molecule n, and
the second term describes a similar effect but with the replacement
of m by n and vice versa.

3. Evolution of wave function

3.1. Evolution of wave function related to the processes of
exciton–exciton annihilation

Consider first the evolution of the two-exciton wave function
under the exciton–exciton annihilation processes

i�h
dW
dt

/ H0 þ Hannihð ÞW ð7Þ

Substituting Eq. (2) into Eq. (7) and using Eqs. (5) and (1), we get
equations for the amplitudes Cmn and dmm (m > n)

i�h
dCmn

dt
¼ �h xme;g þxne;g

� �
Cmn þ

X
v

dmvVmn þ dnvVnmð Þ

i�h
ddmv

dt
¼ �hxmfv;gdmv þ

X
m>n

CmnVnm þ
X
n>m

CnmVnm ð8Þ

Eq. (8) may be written in more symmetric form by introducing a
new function

Qmn ¼ Cmn m > n

Cnm n > m

� �
ð9Þ

that is symmetric with respect to indices m and n

i�h
dQmn

dt
¼ 2�hxegQmn þ

X
v

dmvVmn þ dnvVnmð Þ

i�h
ddmv

dt
¼ �hxfmgdmv þ

X
m–n

QmnVnm ð10Þ

where we put xme;g ¼ xeg and xmfv;g ¼ xfmg (the ensemble of iden-
tical molecules). To solve Eq. (10), let us introduce slowly changing
variables qmn and pmm using

Qmn ¼ qmn exp �i2xegt
� �

dmv ¼ pmm exp �ixfmgt
� � ð11Þ

Then Eq. (10) can be written as

i�h
dqmn

dt
¼
X
v
zmnv expð�iDv tÞ

i�h
dzmnv

dt
¼ exp iDv tð Þ

X
k–m

qmkVkmVmn þ
X
k–n

qnkVknVnm

 !
� i�hczmnv

ð12Þ
where Dv ¼ xfmg � 2xeg

� �
, and we denoted pmvVmn þ pnvVnm ¼ zmnv

and took the decay c of upper states fv into account that includes
vibrational relaxation. Formally integrating the second Eq. (12)
and substituting the result into the first Eq. (12), we get

dqmn

dt
¼ � 1

�h2

X
m

Z t

�1
dt0

X
k–m

qmkðt0ÞVkmVmn þ
X
k–n

qnkðt0Þ � VknVnm

 !
� exp � cþ iDvð Þðt � t0Þ½ � ð13Þ

This results in a set of integro-differential equations for qmn. The
dynamics contains memory effects and is therefore non-Markovian.
Next, we make a Markovian approximation by assuming that slowly
varying functions qmkðt0Þ can be moved as qmkðtÞ to outside the inte-
gral. Eq. (13) then becomes

dqmn

dt
¼ �1

2
wmn � i4Dmnnmð Þqmn þ

X
k–m;n

½ðCkmmn � i2DkmmnÞqmk

(

þ Cknnm � i2Dknnmð Þqnk�
)

ð14Þ

where wmn ¼ 2Cmnnm is the exciton–exciton annihilation rate,

Ckmmn ¼ 2

�h2 VkmVmn

X
m

c
c2 þ D2

m

ð15Þ

and

Dkmmn ¼ 1

�h2 VkmVmn

X
v

Dv

c2 þ D2
v

ð16Þ

that gives

Ckmmn ¼ 2p
�h2 VkmVmn

X
v
d xfvg � 2xeg
� � ð17Þ

and

Dkmmn ¼ 1

�h2 VkmVmnP
X
v

1
xfvg � 2xeg

ð18Þ

in the limit c ! 0. Here P denotes the principal value. Parameters
Ckmmn and Cknnm on the right-hand side of Eq. (14) for k– m; n are
non-diagonal elements of the relaxation matrix relating the
decay of two-exciton state jmn > to those of two-exciton states
jmk > and jnk >, respectively. In that case they speak about interfer-
ence effects in relaxation [22–24]. By this means the relaxation of
two-exciton state is determined by non-diagonal relaxation matrix
including contributions of both two- and three-particle processes.
All these multiparticle relaxation terms have the interference
nature, which reflects the fact that a transition to a given state
can, as a rule, be realized not by only one pathway, but, rather, by
a combination of different pathways. The interference relaxation
parameter Ckmmn for k ¼ m� 1 and n ¼ mþ 1 (interaction between
nearest neighbors (see below)), Cðm�1Þmmðmþ1Þ � V ðm�1ÞmVmðmþ1Þ, is
illustrated in Fig. 1.

In the approximation of the interaction between nearest neigh-
bors and real Vmn when Vmn ¼ 0 for m� nj j > 1, and Vmn ¼ V for
n ¼ m� 1, Eq. (14) becomes

dqm;m�1

dt
¼ � a� i2bð Þ qm;m�1 þ

1
2

qm;m	1 þ qm�1;m�2

� �� �
ð19Þ
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where

a ¼ 2V2

�h2

X
v

c
c2 þ D2

v
¼ 2pV2

�h2

X
v
d xfvg � 2xeg
� � ð20Þ

b ¼ V2

�h2

X
v

Dv

c2 þ D2
v

¼ V2

�h2 P
X
v

1
xfvg � 2xeg

ð21Þ

Below we shall generalize Eq. (19) to the presence of the
dipole–dipole interactions described by Hamiltonian Hint , Eq. (6).
Exact solution of Eq. (19) is given in Appendix A where we
neglected b-terms in comparison with the a-terms.

3.2. Evolution of wave function in the presence of the dipole–dipole
interactions described by Hamiltonian Hint

Consider now evolution of the two-exciton wave function under
the influence of Hint

i�h
dW
dt

/ HintW ð22Þ

Substituting Eq. (2) into Eq. (22) and using Eq. (6), we get equa-
tions for the amplitudes Cmn (m > n) after cumbersome algebraic
rearrangements.

i
2
dCmn

dt
/
X
k>n;
k–m

Jgegemk Ckn þ
X
n>k;
k–m

Jgegemk Cnk þ
X
m>k;
k–n

Jgegenk Cmk þ
X
k>m;
k–n

Jgegenk Ckm ð23Þ

In the case of a nearest-neighbor interaction, an exact solution of
Eq. (23) may be obtained by transforming the Paulion operators
(By

m; Bn) in Hamiltonian Hint to fermion operators through the Jor-
dan–Wigner transformation [25–28]. Then eigenvalues of energy
and eigenfunctions for a single-exciton excitation are given by

El ¼ �hxeg þ 2�hJ cos
pl

N þ 1

� 	
ð24Þ

and

lj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

N þ 1

r XN
n¼1

sin
pnl
N þ 1

� 	
nej i ð25Þ

where J 
 Jgegemm�1;l ¼ 1; . . .N;N is the number of molecular sites in a
J-aggregates. Eigenvalues of energy and eigenfunctions for a two-
exciton excitations are given by

Elm ¼ 2�hxeg þ 2�hJ cos
pl

N þ 1

� 	
þ cos

pm
N þ 1

� 	� �
ð26Þ

lmj i ¼
X
m>n

Ulm;mn menej i ð27Þ

where 1 6 m < l 6 N, and the matrix Ulm;mn is determined as

Ulm;mn ¼ 2
Nþ1

sin
plm
Nþ1

� 	
sin

pmn
Nþ1

� 	
�sin

pln
Nþ1

� 	
sin

pmm
Nþ1

� 	� �
ð28Þ

The total evolution of amplitudes Cmn, Eq. (8), under the influence of
both Hint and the exciton–exciton annihilation processes, Eq. (19), in
the case of a nearest-neighbor interaction is given by

dCmn

dt
¼ � i

�h

X
m0>n0

Heff

� �
mnm0n0Cm0n0

¼ �i2xegCmn � i
�h

X
m0>n0

ðHintÞmnm0n0dn;m�1Cm0n0

� a Cmm�1 þ 1
2
Cmþ1m þ 1

2
Cm�1m�2

� 	
ð29Þ
for m > n where we neglected b-terms in comparison with the
a-terms. Here we have introduced an effective Hamiltonian Heff

Heff

� �
mnm0n0 ¼ 2�hxegdmm0dnn0 þ ðHintÞmnm0n0dn;m�1 � i�ha Vex�exð Þmn;m0n0

ð30Þ
that will be diagonalized below. Here m > n;m0 > n0 and

Vex�exð Þmn;m0n0 ¼ dn;m�1 dnn0dmm0 þ 1
2
dm0 ;mþ1dn0m þ 1

2
dm0 ;m�1dn0 ;m�2

� 	
ð31Þ

Next let us pass on to the basis of two-exciton states lmj i from the
site basis bearing in mind thatX
m>n

Cmn menej i ¼
X
l>m

Tlm lmj i ð32Þ

Using Eq. (27), we get

Cmn ¼
X
l>m

Ulm;mnTlm;m > n

where Ulm;mn is an unitary real matrix. Then the inverse matrix is

equal to the transposed matrix, i.e. U�1 ¼ UT , and Ulm;mn ¼ Umn;lm.
This gives

Tlm ¼
X
m>n

Ulm;mnCmn ð33Þ

for l > m. Using Eqs. (29) and (33), one gets

i�h
dTlm
dt

¼
X
l0>m0

X
m>n

X
m0>n0

Heff

� �
mnm0n0Ulm;mnUl0m0 ;m0n0Tl0m0 ð34Þ

where l > m. The part of the effective Hamiltonian related to Hint is
diagonal in the lmj i basis, and we obtain

i�h
dTlm
dt

¼
X
l0>m0

�h 2xeg þ 2J cos
pl

N þ 1

� 	
þ cos

pm
N þ 1

� 	� 	� ��

�dll0dmm0 � i�ha
X
m>n

X
m0>n0

Vex�exð Þmn;m0n0Ulm;mnUl0m0 ;m0n0Tl0m0

)
ð35Þ

Let us calculate matrix elements Vex�ex in the lmj i basis (see the
last term in the curly brackets on the right-hand side of Eq. (35))

Vex�exð Þlm;l0m0 ¼
X
m>n

X
m0>n0

Vex�exð Þmn;m0n0Ulm;mnUl0m0 ;m0n0 ð36Þ

Using Eq. (31), one gets

Vex�exð Þlm;l0m0 ¼
XN
m¼2

Ulm;mm�1Ul0m0 ;mm�1 þ 1
2

XN�1

m¼2

Ulm;mm�1Ul0m0 ;mþ1m

þ 1
2

XN
m¼3

Ulm;mm�1Ul0m0 ;m�1m�2 ð37Þ

Changing summation indices and using Eq. (28), we finally obtain
after cumbersome algebraic rearrangements

a Vex�exð Þlm;l0m0 ¼ Y l; m;l0; m0ð Þ þ Y l;�m;l0;�m0ð Þ
� Y l;�m;l0; m0ð Þ � Y l; m;l0;�m0ð Þ ð38Þ

where function Y l; m;l0; m0ð Þ is defined as

Y l;m;l0;m0ð Þ ¼ 4a
ðNþ1Þ2

sin
pðl�mÞ
2ðNþ1Þ sin

pðl0 �m0Þ
2ðNþ1Þ �cos

pðlþmÞ
2ðNþ1Þ

� cos
pðl0 þm0Þ
2ðNþ1Þ

�
XN
m¼1

cos
pðlþm�l0 �m0Þm

ðNþ1Þ �cos
pðlþmþl0 þm0Þm

ðNþ1Þ
� �

ð39Þ



Fig. 3. Spectrum of two-exciton states for N ¼ 20 and a ¼ �0:1 J (solid diamonds).
For comparison we also show spectrum without taking the interference processes
in the exciton–exciton annihilation into account (see Appendix A) (open circles).

Fig. 4. Spectrum of two-exciton states for N ¼ 20 and a ¼ �J (solid diamonds). For
comparison we also show spectrum without taking the interference processes in
the exciton–exciton annihilation into account (open circles).
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Here

XN
m¼1

cos
pxm
N þ 1

� 	
¼

N for x ¼ 0 or x ¼ 2lðN þ 1Þ
�1 for x ¼ 2n where n – lðN þ 1Þ

0 for x ¼ 2nþ 1

8><>:
9>=>; ð40Þ

Eigenvalues for energy and decay of the two-exciton states can
be found by diagonalization of the effective Hamiltonian, Eq. (30),
that couples all the two-exciton states. This will be done
numerically in the next section.

4. Eigenvalues for energy and decay of two-exciton states

Consider Eq. (31) for the imaginary part ‘‘��ha Vex�exð Þmn;m0n0” of
the effective Hamiltonian, Eq. (30),

��ha Vex�exð Þmn;m0n0 ¼ ��ha Vex�exð Þm;m�1;m;m�1 þ
1
2

Vex�exð Þm;m�1;mþ1;m

�
þ1
2

Vex�exð Þm;m�1;m�1;m�2

�
ð41Þ

where m > n;m0 > n0. The first term on the right-hand side of
Eq. (41) represents usual bimolecular decay of the two-exciton
state. At the same time the second and the third terms are related
to three-particle processes and are interference terms in nature.
The point is that due to deactivation of molecule m both mþ 1
and m� 1 excited molecules can pass to their third levels fj i
destructing the two-exciton state.

4.1. Spectrum of two-exciton states

The eigenvalues of the non–Hermitian effective Hamiltonian
are complex. Consider first their real parts defining the spectrum
of the two-exciton states of a J-aggregate (J < 0), Figs. 2–5, that

are given in terms of relative quantity e ¼ E�2�hxeg
�hjJj .

At first glance the figures show that the processes of the exci-
ton–exciton annihilation not strongly affected the spectrum
extending the plateau corresponding to zero values of e. The
spectrum is scarcely affected by the interference processes in the
exciton–exciton annihilation. However, the eigenvalues of energy
are markedly affected by the exciton–exciton annihilation pro-
cesses (see Table 1). This effect rises as a number of state increases.
The second, third and fourth columns of Table 1 represent the state
energies in terms of cm�1 for the corresponding value of a and
jJj ¼ 600 cm�1.
Fig. 2. Spectrum of two-exciton states in the absence of exciton–exciton annihi-
lation (a ¼ 0) for N ¼ 20.

Fig. 5. Spectrum of two-exciton states for N ¼ 20 and a ¼ �10 J (solid diamonds).
For comparison we also show spectrum without taking the interference processes
in the exciton–exciton annihilation into account (open circles).



Fig. 6. Decay of two-exciton states for N ¼ 20 and a ¼ �0:1 J (diamonds). For
comparison we also show the decays without taking the interference processes in
the exciton–exciton annihilation into account (see Appendix A) (solid circles).

Fig. 7. The same as in Fig. 6 for small decay.
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4.2. Decay of two-exciton states

Consider now the imaginary parts of the eigenvalues of the
effective Hamiltonian defining the decay of the two-exciton states
due to the exciton–exciton annihilation, Figs. 6–9, 10,11, that are
given in terms of the relative quantity decay=jJj.

Figs. 6 and 7 show that for small a, taking the interference pro-
cesses in the exciton–exciton annihilation into account increases
the lifetime of the states with relative energy e that is close to zero.

One can also see that for the states with relative energy e that is
close to zero, decay of a large number of states is large and is propor-
tional to a. Taking the interference processes in the exciton–exciton
annihilation into account increases the decay up to 2a, Fig. 10, that is
associated with the signatures of the super-radiance [18]. The point
is that the decay rate of this state (the decay of population) is 4a, i.e.
twice the probability of bimolecular decaywa that is equal to 2a.

However, there are also states with very large lifetimes in the
region under consideration. In this case the contribution of the
interference processes is very important. The decay is also
suppressed for small and large e. All the long-lived states under
discussion are associated with the population trapping [21,18].

It is worthy to note that the influence of the interference
processes in the exciton–exciton annihilation on lifetime depends
on the value of a. The interference processes decrease the lifetime
of lower and upper states for small a. For a > �2 J, the interference
processes increase lifetimes of the lower and upper states. For
some values of a the interference processes contribution is small.
Fig. 12 represents the decay of the lower state as a function of a
that appears as a non-monotonous one. It is worthy to note that
decays for very small and large a look much the same that is
associated with the population trapping [21,18] for large a.

5. Comparison with previous results and experiment

Previously authors of earlier pioneering works [13,14] related
the decay of the lowest state 21j i from the two-exciton excited
states lmj i to the probability of bimolecular decay wa that is equal
to 2a using our designations. Accordingly, their calculations corre-
spond to the calculation of only the diagonal matrix element
a Vex�exð Þlm;l0m0 for l ¼ l0 ¼ 2 and m ¼ m0 ¼ 1. Indeed, using Eqs.
(38)–(40), one gets
Table 1
Real parts of the eigenvalues of the non–Hermitian effective Hamiltonian defining
spectrum of two-exciton states.

State number a ¼ 0 a ¼ �J a ¼ �10 J

1 �2333.2 �2330.2 �2326.6
2 �2267.8 �2261.7 �2254.6
4 �2278.1 �2168.3 �2156.3
6 �2072.6 �2057.7 �2040.3
8 �2026.3 �2010.3 �1990.2
9 �1960.8 �1941.4 �1918.1
10 �1934.8 �1916.6 �1891.1
12 �1871.1 �1847.5 �1989.8
14 �1786.6 �1764.5 �1730.7
16 �1739.7 �1711.3 �1676.7
18 �1627.9 �1599.9 �1556.9
20 �1591.5 �1558.7 �1516.2
22 �1519.6 �1488.3 �1440.8
24 �1453.6 �1426.8 �1374.0
26 �1413.7 �1384.5 �1330.0
28 �1348.2 �1304.3 �1250.6
30 �1276.3 �1249.4 �1186.5
32 �1236.4 �1207.0 �1142.5
34 �1170.8 �1137.6 �1070.4
36 �1096.9 �1071.7 �999.0
38 �1057.0 �1029.4 �955.0
39 �1038.4 �984.8 �916.0
40 �1015.2 �965.0 �893.7

Fig. 8. Decay of two-exciton states for N ¼ 20 and a ¼ �J (diamonds). For
comparison we also show the decays without taking the interference processes in
the exciton–exciton annihilation into account (see Appendix A) (solid circles).



Fig. 9. The same as in Fig. 8 for small decay.

Fig. 10. Decay of two-exciton states for N ¼ 20 and a ¼ �10 J (diamonds). For
comparison we also show the decays without taking the interference processes in
the exciton–exciton annihilation into account (see Appendix A) (solid circles).

Fig. 12. Decay of the lower state of the two-exciton states as a function of a for
N ¼ 20 (diamonds). For comparison we also show decays without taking the
interference processes in the exciton–exciton annihilation into account (solid
circles).
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Fig. 11. The same as in Fig. 10 for small decay.
a Vex�exð Þ21;21 ¼ 2a
N þ 1

sin2 2p
N þ 1

þ sin2 p
N þ 1

� 	
ð42Þ

that is one half the exciton–exciton annihilation rate calculated in
Eq. (8) of Ref. [13]. The last formula gives a Vex�exð Þ21;21’10ap2=N3

for N�1 that is about 1:2�10�2a for N¼20.
However, states lmj i are eigenstates of only the real part of the

effective Hamiltonian, Eq. (30), with no regard for its imaginary
part that is of order of a. As noted in the Introduction, if the width
2a is of the order of, or exceeds, the spacing between real energies
E, this means the transition to the regime of overlapping
resonances that supplies the system by the new collectivity - the
possibility of coherent decay. So that one should compare a with
the energy space between adjacent two-exciton states. Using the
representation of wa ¼ 2a by formula (2) of Ref. [13],

wa ¼ 4pV2=ð�h2CÞ, one can evaluate a. In the latter formula the den-
sity of final states qðEÞ ¼PvdðE� Efv Þ was substituted by the

inverse relaxation constant ð�hCÞ�1 (compare with Eq. (20)). We
choose the value of V � 600 cm�1 from Refs. [13,12,29]. Authors
of Ref. [13] related C to the rate of vibrational relaxation of high-
lying levels that can be evaluated as 1013 � 1014 s�1 [30–32]. These
values of parameters give us a ¼ ð678:6� 6786Þ cm�1, i.e.
a=V � 1� 10. Such values of a not only exceed the energy space
between adjacent two-exciton states, but can exceed all the range
spanned by these states equal to 8 Jj j � 8V � 4800 cm�1 as well.
This means the regime of overlapping resonances that supplies
the system by the new collectivity - the possibility of coherent
decay in the annihilation channel.

Since a=V � 1� 10, we shall concentrate on Figs. 8, 9 and
Figs. 10, 11 for a ¼ �J and a ¼ �10 J, respectively. The second
and third columns of Table 2 represent the state decays in terms
of cm�1 for the corresponding value of a and J ¼ �600 cm�1. The
energies of the corresponding states are given in Table 1.

The third column of Table 2 shows that the state decays for
a ¼ �10 J are very small demonstrating well-marked population
trapping. In contrast, the second column of Table 2 corresponding
to a ¼ �J, shows decays that are closer to experimental values of
Ref. [12] that are related to the decay of 81 cm�1 for the fastest
component. In addition, Fig. 12 demonstrates that the largest
decays of lower states are realized just for a ¼ �J. So, the choice
of relation a ¼ �J seems us more reasonable. In addition, an
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inequality, C > V , is needed for using the perturbation theory to
calculate the bimolecular rate of the exciton–exciton annihilation,
wa [13], and also a. This inequality is realized for C ¼ 1014 s�1 that
gives a ¼ �J, and is not realized for C ¼ 1013 s�1 that gives
a ¼ �10 J.

Let us compare the decays of the second column of Table 2 with
experiment [12]. They observed a number of decay components
fromwhich at least three exponential functions with the character-
istic time constants of 200 fs, 1.5 ps, and 20 ps were needed. It is
worthy to note that relaxation of high vibrational states of large
molecules in solutions occurs in two steps [30–32]. The first step
is very fast intramolecular relaxation with the characteristic time
of 10�13 � 10�14 s that increases an intramolecular temperature.
The next step is cooling ‘‘hot” molecules till the temperature of
the surrounding due to intermolecular relaxation that occurs dur-
ing � 10�11 s. So, we relate the decay of 20 ps with cooling the
excited molecules (see also [11] where cooling with the character-
istic time of 18 ps was observed in excitonic systems). As to con-
cerns the intermediate decay of 1.5 ps, it corresponds to the
decay constant of 11:1 cm�1 that is realized for the state number
4 (see the second column of Table 2). The energy of state 4 is higher
than that of state 1 for 162 cm�1 (see the third column of Table 1).
The photon of k ¼ 570 nm with energy of 17546 cm�1 used in
experiment [12] can lead to heating the high vibrationally excited
molecule created due to the exciton–exciton annihilation process
for DT ¼ 17546 cm�1=Cvib ’ 244 K where the vibrational heat
capacity Cvib � 50 cm�1 K�1 was used [30] that is characteristic
for large molecules. Bearing in mind the temperature of the sur-
rounding of 20 K in experiment [12], one gets the temperature of
the high vibrationally excited molecule as T� ’ 264 K that leads
to the excess energy of 380 cm�1 covering states up to 9–10 (see
the third column of Table 1). As a matter of fact, the decay constant
of 11:1 cm�1 may be considered as an averaged decay constant of
the states populated at temperature T�. This is a new option for
the explanation of the intermediate decay of 1.5 ps that was
related before to the annihilation of two excitons created within
separated localization segments [12].

Furthermore, the fastest component of decay of 200 fs observed
in experiment [12] corresponds to the decay of state 39, the second
column of Table 2. The energy of this state is higher than that of the
Table 2
Imaginary parts of the eigenvalues of the non–Hermitian effective Hamiltonian
defining decay of two-exciton states.

State number a ¼ �J a ¼ �10 J

1 3.4 0.7
2 6.7 1.4
3 8.8 1.8
4 11.1 2.4
6 17.1 3.3
8 18.9 3.9
10 22.6 5
12 28.1 5.1
14 29.0 6.6
16 35.0 6.3
18 35.3 8.3
20 42.6 7.5
22 43.4 8.6
24 41.0 10
26 44.4 10.1
28 59.6 8.8
30 45.66 11.9
32 49.49 11.9
34 55.9 11.9
36 48.6 13.7
38 52.4 13.7
39 81.6 10.3
40 79.9 10.9
lowest state for 1345 cm�1. In principle, the state with the excess
energy of about 1345 cm�1 may be excited by direct optical
transition from the single-exciton state. Let us evaluate the corre-
sponding dipole moment. A uniform excitation by an external elec-
tric field with a wave vector oriented normal to the aggregate axis
excites only the single-exciton k ¼ 0 state with energy �hxeg þ 2�h J
[16]. Then the exciton-qth-biexciton transition dipole moment
from this state is proportional to cot½pq=ð2NÞ� where the energy
of the q th-biexciton state is given by 2�hxeg þ 4�hJ cosðpq=NÞ
[33,16]. Here q ¼ 1;3;5; . . . ;N�, where N� ¼ N � 2 for N odd and
N� ¼ N � 1 for N even. The state with the excess energy of
1345 cm�1 corresponds to q � 7 that gives for the ratio between
the dipole moments for the transitions to the 7th- and first biexci-
ton states cot½7p=ð2NÞ�= cot½p=ð2NÞ� ’ 0:13. It is well to bear in
mind that this evaluation is based on only the real part of the effec-
tive Hamiltonian with no regard for its imaginary part. Calculations
of the dipole moments based on the eigenstates of the effective
Hamiltonian are beyond the scope of our present work.

Unfortunately, the authors of Ref. [12] did not provide the
whole set of experimental data relative to the kinetics of the exci-
ton–exciton annihilation except that at least three exponential
functions were needed (see above) with no indications of their
weights. In addition, they related the fastest component of decay
of 200 fs to the decay time of the nðP 2Þ-exciton states, from
which only two-exciton states were considered in our work. It is
worthy to note in this connection that if the biexcitonic state with
the excess energy of about 1345 cm�1 is excited, its decay due to
the exciton–exciton annihilation will be accompanied by the
vibrational relaxation with the rate of 1012 � 1013 s�1 that is slower
than that of high excited vibrational states (see above). So, the
200 fs component of the exciton–exciton annihilation is quite
competitive with the vibrational relaxation, and may manifest
itself in experiment.

It is worthy to note that in the present work we calculated the
rate of the exciton–exciton annihilation using the nearest-neighbor
approximation. However, the coupling to far neighbors gives rise to
increase of the intrasegment annihilation rate by a factor of 2.7
[14]. In such a case, already the state number 12 will decay with
the rate of the fastest component (see Table 2). State 12 corre-
sponds to the excess energy of only 483 cm�1 (see Table 1) that
allows to populate it due to increasing an intramolecular temper-
ature or by direct optical transition from the single-exciton state
Fig. 13. Decay of two-exciton states for N ¼ 3 and a ¼ �0:1 J (diamonds). For
comparison we also show the decays without taking the interference processes in
the exciton–exciton annihilation into account (see Appendix A) (solid circles).
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to q � 3� 5 (see above). The values q ¼ 3 and q ¼ 5 give for the
ratio between the dipole moments for the transitions to the qth
and first biexciton states cot½3p=ð2NÞ�= cot½p=ð2NÞ� ’ 0:33 and
cot½5p=ð2NÞ�= cot½p=ð2NÞ� ’ 0:2, respectively. This issue will be
considered in more detail elsewhere.
6. Conclusion

In this work we have studied the decay of the two-exciton
excited states of a J-aggregate that is collective in nature. The col-
lective character of the decay is due to both the dipole–dipole
interaction between molecules and the interference processes in
the exciton–exciton annihilation [17]. It is well known that the col-
lective states can demonstrate various behaviors, the two extreme
cases of which are super-radiance by Dicke [19,20] and the popu-
lation trapping [21,18]. For the description of the corresponding
physics in this work we used the mathematical formalism based
on the effective non–Hermitian Hamiltonian [18] suggested in
nuclear theory. Our calculations show that the processes of the
exciton–exciton annihilation affected the spectrum extending the
plateau corresponding to zero values of the relative energy e. In
addition, the spectrum is scarcely affected by the interference pro-
cesses in the exciton–exciton annihilation. However, the eigenval-
ues of energy are markedly affected by the exciton–exciton
annihilation processes (see Table 1). This effect rises as a number
of state increases.

In contrast, the decay of the two-exciton states is strongly
affected by the interference processes. For small bimolecular decay
rates, a, taking the interference processes in the exciton–exciton
annihilation into account increases the lifetime of the states with
relative energies e that are close to zero. For the same region of
states, decay of a number of states is large and is proportional to
a. Taking the interference processes in the exciton–exciton annihi-
lation into account increases the decay up to 2a that is associated
with the signatures of the super-radiance [18]. However, there are
also states with very large lifetimes in the region under considera-
tion. In this case the contribution of the interference processes is
very important. The decay is also suppressed for small and large
e. All the long-lived states under discussion are associated with
the population trapping [21,18].

The influence of the interference processes in the exciton–exci-
ton annihilation on lifetime depends on the relation between a and
J. The interference processes decrease the lifetime of lower and
upper states for small a. For a > �2 J, the interference processes
increase lifetimes of the lower and upper states. For some values
of a the interference processes contribution is small. In addition,
comparing Fig. 13 with the figures of Section 4.2, one can readily
see that the smaller is the number of molecules in the aggregate,
the greater is the influence of the interference processes in the
exciton–exciton annihilation on the distribution of the decay
values throughout the energy spectrum.

We have compared our approach with previous results [13]
based on the eigenstates of only the real part of the effective
Hamiltonian with no regard for its imaginary part. Our evaluations
of the imaginary part show that it exceeds the spacing between
real energies of the two-exciton states that gives rise to the transi-
tion to the regime of overlapping resonances supplying the system
by the new collectivity - the possibility of coherent decay in the
annihilation channel. We have also considered experiment [12]
in the framework of our approach, the picture of which appears
to be more complex and richer than it was reasoned before.

The results of the paper can be used for planning nonlinear
optical experiments with J-aggregates, in order to avoid strongly
decaying two-exciton states and involve in the main long-lived
states associated with the population trapping.
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Appendix A

Since one of the aims of this work is the investigation of the role
of the multiparticle interference processes in the exciton–exciton
annihilation predicted in Ref. [17], we shall also consider matrix
elements Vex�ex without taking the interference processes into
account

Vex�exð Þ0lm;l0m0 ¼
1
2

XN�1

m¼1

Ulm;mþ1mUl0m0 ;mþ1m þ 1
2

XN
m¼2

Ulm;mm�1Ul0m0 ;mm�1

ð43Þ
where

a Vex�exð Þ0lm;l0m0 ¼ Y 0 l; m;l0; m0ð Þ þ Y 0 l;�m;l0;�m0ð Þ
� Y 0 l;�m;l0; m0ð Þ � Y 0 l; m;l0;�m0ð Þ ð44Þ

and function Y 0 l; m;l0; m0ð Þ is determined as

Y 0 l;m;l0;m0ð Þ ¼ 2a
ðNþ1Þ2

sin
pðl�mÞ
2ðNþ1Þ sin

pðl0 �m0Þ
2ðNþ1Þ

� cos
pðlþm�l0 �m0Þ

2ðNþ1Þ
XN
m¼1

cos
pðlþm�l0 �m0Þm

ðNþ1Þ

"

�cos
pðlþmþl0 þm0Þ

ðNþ1Þ
XN
m¼1

cos
pðlþmþl0 þm0Þm

ðNþ1Þ

#
ð45Þ

One can also separate out the contribution of the interference terms

a Vex�exð Þintlm;l0m0 ¼ Yint l; m;l0; m0ð Þ þ Yint l;�m;l0;�m0ð Þ
� Yint l;�m;l0; m0ð Þ � Yint l; m;l0;�m0ð Þ ð46Þ

where

Yint l;m;l0;m0ð Þ ¼ 2a
ðNþ1Þ2

sin
pðl�mÞ
2ðNþ1Þ sin

pðl0 �m0Þ
2ðNþ1Þ

� cos
pðlþmþl0 þm0Þ

2ðNþ1Þ
XN
m¼1

cos
pðlþm�l0 �m0Þm

ðNþ1Þ

"

�cos
pðlþm�l0 �m0Þ

ðNþ1Þ
XN
m¼1

cos
pðlþmþl0 þm0Þm

ðNþ1Þ

#
ð47Þ

It is easily seen that

a Vex�exð Þlm;l0m0 ¼ a Vex�exð Þ0lm;l0m0 þ a Vex�exð Þintlm;l0m0 ð48Þ
Appendix B

Consider the evolution of the two-exciton wave function
only under the exciton–exciton annihilation processes in the
approximation of the interaction between nearest neighbors,
Eq. (19). Denoting rm ¼ qm;mþ1 and introducing new variable
t0 ¼ a� i2bð Þt, we get

drm
dt0

¼ � rm þ 1
2

rm�1 þ rmþ1ð Þ
� �


 �
XN
k¼1

Kmkrk ð49Þ
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The solution of Eq. (49) may be written as
½rm� ¼ expð�Kt0Þ½rmðt0 ¼ 0Þ� where matrix K 
 ½Kmk� is a three-
diagonal matrix with eigenvalues [34].

kk ¼ 1þ cos
pk
N

ð50Þ

and k ¼ 1; . . . ;N � 1. So, state k decays as / exp½�ð1þ cos pkN Þ
a� i2bð Þt�. Specifically, state k ¼ N � 1 is a long-lived state with

lifetime sN�1 ¼ 1= a 1þ cos pðN�1Þ
N

� �h i
¼ 1= a2 sin2 p

2N

� �
that gives

sN�1 ’ 2N2=ðp2aÞ for N � 1. This long-lived state is associated with
the population trapping [18,21]. In contrast, state k ¼ 1 has lifetime
s1 ¼ 1= a 1þ cos pN

� �
 �
that gives s1 ’ 1=ð2aÞ for N � 1. This lifetime

is one-half that obtained without taking the interference processes
in the exciton–exciton annihilation into account. It is worthy to
note that short lifetime s1 ’ 1=ð2aÞ correlates with the lifetime
obtained numerically by diagonalization of the effective Hamilto-
nian in Section 4.2 for a ¼ �10 J, Fig. 10. One can appreciate the
meaning of this, since the case under consideration in Appendix B
corresponds to a � jJj.
Appendix C

A simplest system that enables us to consider the interference
processes in the exciton–exciton annihilation is a trimer, N ¼ 3. A
trimer has three two-exciton states with relative energies
e ¼ E�2�hx0

�hjJj equal to e1 ¼ �
ffiffiffi
2

p
for l ¼ 2 and m ¼ 1; e2 ¼ 0 for l ¼ 3

and m ¼ 1, and e3 ¼
ffiffiffi
2

p
for l ¼ 3 and m ¼ 2. Using Eqs. (38) and

(39) for l ¼ 2;3 and m ¼ 1;2 where l > m, one can calculate the
matrix elements a Vex�exð Þlm;l0m0 of the effective Hamiltonian for
the trimer that gives

eHeff ¼
�

ffiffiffi
2

p
þ i 3~a4 0 i ~a4
0 i ~a2 0

i 3~a4 0
ffiffiffi
2

p
þ i 3~a4

0BB@
1CCA ð51Þ

where eHeff 
 ðHeff � 2�hx0Þ=ð�hjJjÞ; ~a 
 a=jJj. The eigenvalues of eHeff

can be found as the solutions of the equation detðeHeff � kEÞ ¼ 0 .

One gets k2 ¼ i ~a2 ; k1;3 ¼ i 3~a4 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 9~a2

16

� �q
. It is easy to see that all

the roots become imaginary for ~a > 4
ffiffiffi
2

p
=3. It is worthy to note that

the same solution may be obtained for a trimer in the site represen-
tation combining Eqs. (19) and (23).
Fig. 13 shows the decays of the two-exciton states for a trimer.
Comparing Fig. 13 with the figures of Section 4.2, one can readily
see that the smaller is the number of molecules in the aggregate,
the greater is the influence of the interference processes in
the exciton–exciton annihilation on the distribution of the decay
values throughout the energy spectrum.
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