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Abstract. We have studied the time evolution of population wave packets under
intense chirped pulse excitation by resonance heterodyne optical Kerr effect spec-
troscopy. In general, this method enables us to obtain complementary information
about population wave packets versus the absorption spectrum of an intense chirped
pulse. We have generalized the “moving potentials” picture of one of the authors to a
non-Debye solvent. We analyze the effects of both the parameters of the solvent–
solute system and the electric field on the signal of the heterodyne optical Kerr effect
experiment.

1. INTRODUCTION
Recent experiments on optical control involved the use
of chirped pulses. The interaction of intense chirped
ultrashort pulses with molecular systems in liquid solu-
tions has shown that it is possible to control the ratio of
the ground-state population to the excited population.
The interaction of an intense pulse with a probe mol-
ecule in solution can be thought of in terms of sequential
interactions with the field. In the nonlinear regime, more
than one photon interacts with the molecular probe, and
both absorption and stimulated emission can occur.

The effects of varying the chirp and intensity of an
ultrashort pulse exciting probe molecules in liquid solu-
tions have been investigated experimentally.1–3 In these
experiments the integrated fluorescence (which is di-
rectly proportional to the total excited-state population)
after the completion of the pulse action was measured as
a function of pulse chirp. In addition, the absorption
spectrum of chirped pulses was measured.1,3 For low-
power excitation the absorption and the excited-state
population were independent of chirp, while for high-
power excitation the absorption exhibited a strong chirp
dependence.

It has been shown in ref 4 that the absorption spec-
trum αabs(Ω) gives information about the population

wave packet difference in the ground- and excited-elec-
tronic states ∆′(ω21–ω(t),t) at the time moment t, when
measured using strongly chirped pulses:

α
abs

(Ω) ~ ∆′(ω
21

–ω(t),t)  (1)

where ω(t) is the instantaneous pulse frequency, Ω =
ω(t), and ω21 is the frequency at the absorption band
maximum.

Complimentary information about wave packets can
be obtained using pump-probe spectroscopy with
chirped both pump and probe pulses. By way of ex-
ample, Apkarian et al.5,6 have investigated by classical
simulations the effect of linearly chirped pulses in
ultrafast pump-probe experiments for the model system
of I2 isolated in a Kr matrix. They have shown that the
chirp of the probe pulse can be used as a vectorial
diagnostic of the momentum of the evolving wave
packet. Their simulations and corresponding experi-
mental results7 concerned a weak excitation when the
pump and probe pulses acted on different transitions.

In this paper, we are continuing our study of the time
evolution of population wave packets under intense
chirped pulse excitation.4,8 We show that the resonance
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heterodyne optical Kerr effect (HOKE) spectroscopy
with intense chirped pulses enables us in principal to
obtain complementary information about population
wave packets versus the absorption spectrum of an intense
chirped pulse. The point is that the absorption spectrum
directly reflects the time evolution of population wave
packets’ difference only at the configuration coordinate
corresponding to instantaneous Franck–Condon transition
at time t (see eq 1). In contrast, the resonance HOKE
spectroscopy enables us to obtain similar information
for any instantaneous Franck–Condon transition corre-
sponding to time t – τ, where τ is a variable delay between
the pump and probe (or local oscillator, LO) pulses:

   JHOKE(τ) ~ –∫–
∞
∞|ELO(t – τ)|2∆′NL (ω21 – ω(t – τ), t)dt  (2)

Here ω(t–τ) is the instantaneous LO (or probe) fre-
quency, ∆′NL(ω21 – ω (t – τ),t) is the deviation of ∆′(ω21 –
ω (t – τ),t) from its equilibrium value at the configura-
tion coordinate corresponding to instantaneous Franck–
Condon transition at time t – τ, and ELO (t – τ) is the LO
field amplitude.* In other words, the HOKE spectros-
copy enables us to obtain information about the popula-
tion wave packet difference for any τ, i.e., for the values
of the configuration coordinate corresponding to instan-
taneous Franck–Condon transitions for different fre-
quencies ω(t – τ) (not only for ω(t) as in the absorption
spectrum measurements).

The remainder of this paper is organized as follows:
In Section 2, we calculate signals in the transmission
“pump-probe” and HOKE experiments. In Section 3,
the setup of the HOKE experiments is depicted. In
Section 4, we analyze numerically the effects of the
parameters of the solvent–solute system and of the elec-
tric field on the signal of the HOKE experiments. We
also fit the results of the model to the experimental
results. A summary of the numerical and the experimen-
tal results is given in the last section. In the Appendix
the nonperturbative model, which is used for our analy-
sis, is extended to the non-Debye solvent environment.
There we generalize the theory of refs 9,10 to the relax-
ation in non-Debye solvent.

2. THEORY
In the transmission “pump-probe” experiment11–13 a
second pulse (whose duration is the same as the pump
pulse) probes the sample transmission ∆T at a delay τ.
This dependence ∆T(τ) is given by14

∆T(τ) ~ –ωIm ∫–
∞
∞ E*

pr
(t–τ)PNL+ (t)dt  (3)

where Epr and PNL+(t) are the amplitudes of the positive

frequency component of the probe field and the nonlin-
ear polarization, respectively.

In a resonance HOKE spectroscopy15–17 (see Fig. 1), a
linearly polarized pump pulse at frequency ω induces
anisotropy in an isotropic sample. After the passage of
the pump pulse through the sample, a linearly polarized
probe pulse at π /4 rad from the pump field polarization,
is incident on the sample. A polarization analyzer is
placed after the sample oriented at approximately π /2
(but not exactly) with respect to the probe pulse polar-
ization. A small portion of the probe pulse that is not
related to the induced anisotropy plays the role of a local
oscillator (LO) with a controlled magnitude and phase.

The HOKE signal can be written in the form:18

JHOKE (τ) ~ –Im∫–
∞
∞ E*

LO (t – τ) exp(iψ)PNL+ (t)dt  (4)

where ψ is the phase of the LO. If ψ = π/2, the resonance
HOKE spectroscopy provides information about the
real part of the nonlinear susceptibility (the change in
the index of refraction). If ψ = 0, the resonance HOKE
spectroscopy provides information similar to that of the
transmission pump-probe spectroscopy (see eq 3). There-
fore, we will discuss for brevity only the HOKE spectros-
copy for ψ = 0, bearing in mind that all our results are also
true for the transmission “pump-probe” experiment.

We will calculate the signal JHOKE(τ) of a resonance
HOKE spectroscopy of a solute molecule in a solvent
with both chirped intense pump and a weak LO. The LO
is a copy of pump, and probes the sample-induced
anisotropy at a delay τ. By way of analogy with ref 10,
consider a molecule with two electronic states n = 1 and
2 in a solvent described by the Hamiltonian

(5)

where E2 > E1, En is the energy of state n and Wn(Q) the
adiabatic Hamiltonian of reservoir R (the vibrational
subsystems of a molecule and solvent interacting with
the two-level electron system under consideration in
state n). The molecule is affected by electromagnetic
radiation of a number of beams

(6)

For phase-modulated pulses, the field amplitudes
→
Em(t) can be presented by

Em(t) = εm(t) exp(iϕm (t)) (7)

where ϕm(t) describes the change of the pulse phase in
time t.

Since the absorption spectrum of a large molecule in

*Eq 2 is a special case of the more general eq 14 (see below) in
the absence of the optically active high-frequency intramo-
lecular vibrations.
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Fig. 1. Experimental setup—(a) Two-gratings compressor for generating linear chirped pulses. The left grating is moved parallel
to the lenses’ optical axis for controlling the pulse’s chirp. Captions: M—mirror, L—lens, G—grating. (b) OKE autocorrelator.
Captions: P—polarizer, BS—beamsplitter, D—detector, short lines—mirrors.

solution consists of overlapping vibronic transitions, we
shall single out the contribution from low frequency
(LF) optically active (OA) vibrations, {ωs}, to Wn(Q):
Wn(Q) = WnM + Wns where Wns is the sum of the Hamilto-
nian governing the nuclear degrees of freedom of the
solvent in the absence of the solute and LFOA intramo-
lecular vibrations, and the part which describes interac-

tions between the solute and the nuclear degrees of
freedom of the solvent; WnM is the Hamiltonian repre-
senting the nuclear degrees of freedom of the high-
frequency (HF) OA vibrations of the solute molecule.

Electromagnetic field (eq 6) induces an optical polar-
ization in the medium P(t) which can be expanded in
powers of E(t):19

A

B
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P(n)(t) = NTr
R
 (Dρ(n) (t)) (8)

where N is the density of particles in the system; D is the
dipole moment operator of a solute molecule; ρ(n) is the
density matrix of the system calculated in nth approxi-
mation with respect to E(t).

We consider only resonance light–matter interac-
tions. We assume that a strong pump 1/2

→
E(t) exp(–iωt) +

c.c. acts at the electronic transition 1 → 2, and a weak
probe resonance 1/2

→
Epr(t – τ) exp[–i(t – τ)ω] + c.c. field

delayed by a variable τ acts at the same transition and
does not overlap in time with the pump, i.e.,

The density matrix satisfies the Liouville equation:

 (9)

where H′(t) = –DE(t).
Consider first the contributions from the LFOA vi-

brations {ωs}. In the case of appreciable Stokes losses
when the perturbation of the nuclear system under elec-
tronic excitation 1 → 2 (a quantity Vs = W2s – W1s) is
large, one can use a semiclassical (short time) approxi-
mation.20 It corresponds to the fast electronic dephasing
limit. In the last case one can consider the density matrix
diagonal with respect to electronic indices ρnn(t). In the
presence of OA intramolecular vibrational modes, one
ought to consider the density matrix averaged with re-
spect to these modes:10

ρ
ns

(t) = Tr
M
 ρ

nn
(t)  (10)

where the total density matrix ρnn(t) is factorized

ρ
nn

(t) = ρ
nM

 ρ
ns

(t) (11)

and

ρ
nM

 = exp(–βW
nM

)/Tr
M
 exp(–βW

nM
)

is the equilibrium density matrix of the intramolecular
OAHF vibrations. Here TrM denotes the operation of
taking a trace over the variables of the intramolecular
OAHF vibrations, β = 1/(kBT).

When the contribution from LFOA vibrations is de-
scribed as the Gaussian–Markovian stochastic modula-
tion of the electronic transition, the density matrix ρns(t)
can be presented as a function of the generalized coordi-
nate α: ~ρns(α,t).10 Knowing the density matrix  ~ρns(α,t),
one can calculate the amplitude of the positive fre-
quency component of the polarization P+(t) by equation
12 of ref 8 and taking into account only the linear

changes of the field phase during time τ′:9

 (12)

where ω(t) = ω–dϕ/dt, and

 (13)

are the characteristic functions (the Fourier transforms)
of the “intramolecular” absorption (α) or emission (ϕ)
spectrum.20

Substituting the last equation into eq 4, we obtain for
ψ = 0

(14)

where  ~ρns
N L (α, t) are the deviations of ~ρns(α,t) from its

equilibrium value

(15)

σ2s = ωstkBT/ –h, ωst is the Stokes shift of the equilibrium
absorption and luminescence spectra.

Let us consider one normal intramolecular oscillator
of frequency ω0 whose equilibrium position is shifted by
∆Q under electronic transition. Its characteristic functions
fα,ϕM(τ′) are determined by the following expression:21

 (16)

where S0 is the Huang–Rhys factor37 defined by S0 =
ω0(∆Q)2/(2 h), θ0 = hω0/(2kBT), In(x) is the modified
Bessel function of the first kind.22 Substituting this ex-
pression into eq 14, we obtain

(17)
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If quantum intramolecular modes are of a high fre-
quency, so that  –hω0 >> kBT, eq 17 is reduced to**

(18)

The population wave packets  
~ρ2s [ω21–ω(t – τ) –

(–1)n kω0, t] can be found by solving equation 42 of ref
10. The extension of the theory to non-Debye solvents is
carried out in the Appendix.

3. EXPERIMENTAL SETUP

The optical experimental setup consists of a femtosecond laser
source, an optical parametric amplifier (OPA), a pulse-shaping
device, and a setup for measurement of the resonance HOKE
signal. The laser system consists of a Ti:Sapphire-based oscil-
lator (Mira Seed Coherent) and a multipass-based Ti:Sapphire
amplifier (Quantronix Odin), which produces laser pulses of
40 fs duration, centered near 800 nm, with a pulse energy of
600 µJ and a repetition rate of 1 kHz. These pulses are used to
pump an OPA that generates tunable short intense and coher-
ent pulses of 50 fs with 25-nm bandwidth in the spectral range
of 600–770 nm. The pulse-shaping apparatus consists of a pair
of 600 lines/mm gratings and two identical lenses with focal
length of f = 15 cm. Their layout is shown in Fig. 1a. By
moving one of the gratings collinearly with the optical axis,
the pulse gains positive or negative linear chirp.23 The chirp
sign depends on the direction of the movements with respect to
the lens focus. During the experiments, two chirp rates were
chosen, –50000 and 50000 fs2, hereafter negative and positive
chirp rate, respectively. The pulse temporal shape was diag-
nosed by an OKE (optical Kerr effect) autocorrelator for deter-
mining the pulse chirp.24 The sample is irradiated by 10-µJ
pulses, focused by a 15-cm lens. The cell was placed about
2 cm from the focus (the spot size was 360 µm at the sample)
to avoid other nonlinear effects. Neutral density filters attenu-
ated the pulse intensity. In the experiments, we use Rho-
damine 800 dye (R800) and DTTCI (3,3′-diethylthiacarbo-
cyanine iodide), which were purchased from Exciton, in 1-mm
or 0.2-mm quartz cells. The dyes are dissolved in methanol.

The optical density of the solution was about 0.7. In the time-
resolved resonance HOKE experiment, the laser-induced
anisotropy created by the resonant absorption of the pump
pulse photons is probed by a variably delayed, weak, polarized
probe pulse. The change in the polarization state of the probe
beam was detected by the transmission through a crossed
polarizer pair (P1 and P2 in Fig. 1b) of the probe beam as a
function of the time delay between the pump and the probe
pulses. In order to amplify the optical Kerr signal, and avoid
complexity due to the quadratic nature of the signal, we used
heterodyne methods for signal detection. A local oscillator
was derived by minor rotation of the analyzer polarizer (P2) by
<1º from the maximum extinction position part of the probe
pulse, which is in phase, and polarized orthogonally to the
probe polarization. The magnitude of the local oscillator inten-
sity is about 30 times larger than that of the Kerr signal. The
use of a local oscillator with field εLO and light intensity ILO to
detect a signal with a field εs and intensity Is results in a
detector response of:

 (19)

The crossed term in parenthesis is the heterodyne term.

4. RESULTS AND DISCUSSION
We measured the effect of both the chirp rate and inten-
sity of the ultrafast pump laser pulse on the HOKE
signal of large dye molecules in polar liquids. The reso-
nance HOKE signal for ψ = 0 provides information
similar to that of traditional pump-probe experiment
signals. An advantage of the HOKE signal is that it is
a null technique where, prior to the pump excitation, no
light passes through the analyzer (polarizer P2 in
Fig. 1b). In the absence of high-frequency optically
active vibrations, the signal is directly related to the
time-dependent deviation of the population difference
between the ground and excited state from its equilib-
rium value ∆′NL(ω21–ω(t–τ),t) (see eq 2).

Prior to presenting our experimental results, we will
first present our model simulations of the effects of the
pump, probe, and the solvent–solute system properties
on the resonance HOKE signal. We solved equation 42
of ref 10 numerically. The diffusion equation computer
program is based on the Kosloff–Tal-Ezer time propa-
gator in a Chebyshev polynomial expansion.25 The com-
puter routine calculates the populations as a function of
the coordinate and time, and then calculates the HOKE
signal by using eq 18.

A. The Effects of the Pump
Two parameters that characterize the pump pulse are

(1) the chirp rate and (2) the intensity of the pulse.

1. The chirp rate. The calculated OKE signals, as a
function of time at various chirp rates of the pulse, are

**Strictly speaking, eqs 2, 14, 17, 18, and eqs A7, A9 below
are correct only for non-overlapping pump and probe pulses.
However, for strongly chirped both pump and probe this crite-
rion is much weaker. The point is that for delays of the order of
pulse duration, in spite of overlapping the pump and probe
pulses, repumping the pump into the probe is very small. This is
due to relatively large differences of the pump and probe instan-
taneous frequencies for the delays under consideration. There-
fore, eqs 2, 14, 17, 18, and eqs A7, A9 are incorrect only for very
small delays, which are much smaller than pulse duration. A
contribution of this time interval into the signal is negligible.
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depicted in Figs. 2a and 2b. The amount of population
transferred from the excited state to the ground state
depends on the synchronization of the chirp rate and the
solvent relaxation, since a momentary population inver-
sion is achieved. Maximum population transfer will
occur at a certain chirp rate that corresponds to the best
match with the solvent coordinate relaxation time τs. In
the case that results in negligible dump, or the case of
positively chirped pulses, the chirp affects the buildup
of both “holes” and “particles” population profiles.
Again, the synchronization between solvent relaxation
time τs and chirp rate has a profound effect on the
effectiveness of the dump process.

In contrast to a positively chirped pulse excitation,
for a negatively chirped pulse, the population reaches
the equilibrium position (the bottom of the potential
well of the excited state) faster, and hence the build up
of the OKE signal for a negatively chirped pulse is faster
than that for positively chirped pulses (as seen from
Figs. 2a and 2b).

2. The intensity of the pulse. For negatively chirped
pulses, the intensity of the pump pulse determines the
effectiveness of the dump process. In general, the larger
the pulse intensity, the larger the OKE signal, since the
sum of “holes” and “particles” at the relevant coordi-
nates is larger (excluding saturation effects). For posi-
tively chirped pulses, the shape of the normalized OKE
signal does not depend on the pump pulse intensity. This
finding arises from the fact that the amount of popula-
tion raised to the excited state is proportional to the
pulse intensity.

Unlike the positively chirped pulse excitation, for a
negatively chirped pulse under effective dump “condi-
tions”, the shape of the normalized OKE signals

strongly depends on the pump pulse intensity. This is
explained by the fact that the amount of the transferred
population (from the excited state to the ground state)
depends not only on the laser intensity but also on the
total population of the state, which was previously trans-
ferred from the ground state. In the case of a “dump”
process, the “blue part” of the pulse transfers the popu-
lation to the excited state, which is proportional to the
total population in the ground electronic state. The “red
part” of the pulse transfers the population from the
excited state back to the ground state in proportion to the
excited state population. Thus, the overall process of
population transfer is nonlinear.

B. The Effects of the Probe
The probe pulse intensity is weak and hence does not

influence the population. The OKE signal depends on
the probe pulse chirp and its carrier frequency only. The
dependence of the OKE signals on the carrier frequency
shows a distinct effect. The influence of the solvent
relaxation on this dependence will be discussed later. As
seen in Figs. 2a and 2b, the chirp determines the pulse
width, and therefore the OKE signal rise time increases
with the increase in the chirp. Also, the dynamics of the
OKE signal slows down as the chirp increases, since the
population transfer rate also decreases as the chirp in-
creases. In addition, the probe monitors the changes at a
slower rate.

C. The Effects of the Solvent–Solute System Properties
In addition to the dependence of the OKE on both the

pump and probe pulse parameters, the OKE signal also
depends on the probe molecule and solvent bath proper-
ties. The molecular parameters are the correlation time
τs, the Stokes shift ωst, the molecule oscillator strength,

Fig. 2. Simulations of OKE signals of DTTCI as functions of the pulses chirp (|Φ”(v)| = 50000,120000 fs2). Fig. 2a is for the
negative chirps and Fig. 2b is for the positive chirps. Transform-limited pulse temporal width is equal to 30 fs, τs = 50 fs, the
central excitation wavelength = 770 nm, ωst = 800 cm–1, and the intensity factor Q′ (see ref 9) is equal to 2.
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Fig. 3. Simulations of OKE signals in DTTCI as a function of the relaxation time (τs = 50,250 fs). Figure 3A is for the positive
chirp: 50000 fs2 and Fig. 3B is for the negative chirp: –50000 fs2. The rest of the parameters are the same as in Fig. 2.

the frequency of the OAHF vibrations ω0, and S0 (the
Huang–Rhys factor). We obtained the last four param-
eters from the fit of the experimental absorption or
emission spectrum to equation 35 of ref 8. Figures 3a
and 3b show the dependence of the calculated OKE
signal on τs for Φ′′(v) = 50000 fs2 and –50000 fs2,

respectively. The calculation is for DTTCI dye in
methanol, where the laser carrier wavelength is 770 nm
and the absorption band maximum is at 760 nm. For
negatively chirped pulse, the relative amplitude of the
long-time behavior of the signal depends on τs. The
longer the relaxation time, the larger is the amplitude of

Fig. 4. Simulation of the population wave packets of the particles and holes as a function of the delay time from the peak of the
pump pulse (0 fs and 120 fs). Vertical lines limit the frequency window of the probe pulse. The pump and probe central
wavelengths are 740 nm (Figs. 4a and 4b) and 770 nm (Figs. 4c and 4d). τs = 50 fs (Figs. 4a and 4c) and 250 fs (Figs. 4b and 4d).
The rest of the parameters are the same as in Fig. 2.
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Fig. 5. Simulation of OKE signals of DTTCI for positive chirp (|Φ”(v)| = 50000 fs2) and various central wavelengths of the pump
and probe (740, 780 nm). τs = 50 (5a), 100 (5b), and 250 fs (5c), respectively. The rest of the parameters are the same as in
Fig. 2.

the decay. The latter behavior can be explained by an
efficient dump process for slow relaxation. For a posi-
tively chirped pulse, when τs is short, we see a rise of the
OKE signal (up to 100 fs), followed by a signal de-
crease. For longer solvent relaxation times, the OKE
signal immediately decreases for positive delay times. The
explanation of this observation is given below. The dy-
namics of the prepared nonequilibrium population wave
packet is seen in Figs. 4a–4d. We use a transformation
of the abscissa from a generalized solvent coordinate to
wavelength coordinate. The transition frequency is
given by:

(20)

λ(α) = c/v (α) (21)

where the effective parabolic potentials U1,2(α) are de-
termined by equation 12 of ref 9, c is the speed of light.
Figures 4a and 4b display the population wave packets
excited and measured near 740 nm, and Figs. 4c and 4d,
near 770 nm. The correlation times are τs = 50 fs (for
Figs. 4a and 4c) and 250 fs (for Figs. 4b and 4d). As

seen, there is a strong dependence of the obtained signals
on the pump and probe laser wavelengths. Figures 5a–5c
show the effect of the central laser wavelength on the
HOKE signal for various relaxation times and positive
chirp (Φ′′ (v) = 50000 fs2). The excitation wavelength
has a distinct effect on the shape of the normalized OKE
signal. As seen in Figs. 5a–5c, for long-wavelength
excitation, a rise time of the signal is noticeable. The
maximum of the OKE signal appears at a time τpeak after
the excitation. The shorter the excitation wavelength,
the shorter is τpeak. At a certain short wavelength, τpeak is
close to zero and the OKE signal reaches a maximum
(at pulse convolution) and then decays with a time
constant that depends on the excitation wavelength. The
shorter the excitation, the longer is the decay time. For
large τs, the amplitude of the rise time component de-
creases.

For negatively chirped pulses, the effect of the
pump‘s wavelength on the shape of the OKE signal is
small (almost negligible).

D. Experimental Data
We used our computer program based on the theory

given in the previous section and the experimental pa-
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FIG. 6. Experimental results (markers) of the OKE signals of DTTCI/MeOH for a negatively chirped pulse (–50000 fs2) (Fig. 6a)
and positively chirped pulse (50000 fs2) (Fig. 6b). The solid lines are the theoretical fits. The correlation time τs used for the fit
of (a) τs = 170 fs; for (b) τs = 250 fs. Central excitation wavelength = 640 nm, ωst = 618 cm–1, Q′ = 1.

Fig. 7. Experimental results (markers) of the OKE signals of Rh800/MeOH for a positively chirped pulse (50000 fs2) (Fig. 7a)
and for negatively chirped pulse (–50000 fs2) (Fig. 7b). Solid lines are the theoretical fits. Transform-limited pulse temporal
width is equal to 35 fs, correlation time τs = 150 fs, central excitation wavelength = 680 nm, ωst = 800 cm–1, the saturation
parameter (see ref 9) Q′ = 1, ω0 = 1300 cm–1, S0 = 0.45.

rameters to fit both positively and negatively chirped
HOKE signals of DTTCI, shown in Fig. 6, and
Rhodamine-800 in methanol, shown in Fig. 7. As seen
from the experimental OKE signal of Rhodamine 800,
the computed fit is rather good, while our fit to the
DTTCI data is somewhat less good. A possible explana-
tion for this is the asymmetric spectral profile of the
fundamental wavelength (800 nm), which was used for
DTTCI.

The laser pulse parameters used to fit the signals,
shown in Fig. 7, are: λ0 = 680 nm, the central laser
wavelength, Q′ = 1 (the saturation parameter (see ref 9),

Φ′′ (v) = +50000 and –50000 fs2. The ground- and
excited-states potential surfaces were constructed from
both the absorption band and emission band positions
and shapes. For the best fit of the experimental results
we found that the short component of the solvation τs,
τs = 150 fs.

The corresponding wave packets of both the excited
and ground states of various times are shown in Fig. 8.
At short times and at low laser pulse intensity, both the
excited- and ground-state wave packets are of Gaussian
shape, whose width is determined by the laser pulse
spectral bandwidth. The position on the potential surface
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of the initial wave packets depends on the detuning of
the laser frequency with respect to the frequency of the
Franck–Condon transition. As time progresses, both
excited- and ground-state wave packets reach the equi-
librium positions on the potential surfaces. The initial
relatively narrow bandwidth of the wave packets in-
creases as the time progresses and finally reaches the
equilibrium width.

As described before, in the case of intense short laser
pulses, population can be transferred not only from the
ground state to the excited state, but also from the
excited state back to the ground state. These processes
occur effectively in the case of intense negatively
chirped pulses.

As seen in Fig. 4, the wave packet population of both
ground and excited states differ strongly between posi-
tively and negatively chirped pulses. This is a conse-
quence of the efficient dump process of population from
the excited state to the ground state when the sample is
excited by a negatively chirped pulse. This phenomenon
and carefully selected laser center wavelength and chirp
rate and intensity enable us to control both the ground
and excited wave packets of large dye molecules in the
condensed phase.

5. SUMMARY
In this work we studied the time evolution of population
wave packets under intense chirped pulse excitation by
the resonance HOKE spectroscopy with intense chirped

pulses. In general, the last method enables us to obtain
complementary information about population wave
packets versus the absorption spectrum of an intense
chirped pulse.

We analyzed the effects of both the parameters of the
solvent–solute system and the electric field on the signal
on the HOKE experiment. We fitted the results of the
model to the experimental results, which correlate well.
Such a fitting enables us to obtain a time evolution of
population wave packets under intense chirped pulse
excitation.
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APPENDIX: EQUATIONS FOR POPULATION WAVE
PACKETS FOR NON-DEBYE SOLVENT IN THE

PRESENCE OF INTRAMOLECULAR MODES
A signal in a pump-probe and in a resonance HOKE
spectroscopy18 can be found if one knows population
wave packets in the ground- and excited-electronic
states (see eqs 2, 17, 18, and A9 below). These wave
packets can be calculated by a nonperturbative analytic
approach to the problem of the interaction of high-
power chirped ultrashort pulses with molecular systems
developed in ref 9 on the basis of the “moving poten-
tials” picture. This approach has been generalized in ref
10 by inclusion of high-frequency quantum intramo-
lecular modes. Nonperturbative equations for the popu-
lations of molecular electronic states under the action of
intense chirped pulses have been obtained using the
double-sided Feynman diagrams. All these consider-
ation concerned Debye solvent. The relaxation in Debye
solvent provides an example of a relaxation correspond-
ing to a Markovian perturbation with the exponential
correlation function. However, as recent studies show,
the solvent relaxation is “biphasic”: its correlation func-
tion typically consists of a fast (femtosecond) and a
slower component.26–31 The fastest component of sol-
vent relaxation is typically a Gaussian (inertial) one. In
addition, a fast component can correspond to a diffusive
intramolecular vibrational mode. “Biphasic” relaxation
and especially relaxation with the Gaussian fast compo-
nent provide examples of relaxation corresponding to a
non-Markovian random perturbation. Thus, if one wants
to apply the technique in ref 10, for example, to a non-
Debye solvent, one needs to include non-Markovian
random perturbations. Here we generalize the theory of
refs 9 and 10 to the relaxation in non-Debye solvent.

In ref 10, damping was included as a random pertur-
bation by a Markovian process in the relevant electronic
state. It is known that the equivalence exists between a

Fig. 8. Population wave packet dynamics (in steps of 20 fs)
in Rh800/MeOH for the excited state (Fig. 8a) and for the
ground state (Fig. 8b) found by fitting experimental results of
Fig. 7. Transform-limited pulse temporal width = 35 fs, corre-
lation time τs = 150 fs, central excitation wavelength =
680 nm, ωst = 800 cm–1, saturation parameter (see ref 9) Q′ = 1,
ω0 = 1300 cm–1, S0 = 0.45, chirp = 50000 fs2.
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non-Markovian process and the suitable projection of an
underlying multidimensional Markovian process.32–35

Consequently, we can generalize the consideration of
ref 10 to non-Markovian processes by using multidi-
mensional Markovian processes. In the last case the
double-sided Feynman diagrams for fast optical
dephasing are similar to those of ref 10. The only differ-
ence is related to replacing the one-dimensional
Liouville space Green functions by multidimensional
ones. Summing the diagrams for a multidimensional
Markovian processes similar to ref 10, we obtain the
following equation for ρns(t):

(A1)

for a 2k-dimensional Markovian process. Here {p} are
momenta, {q} are coordinates, ρns

(0) ({q}, {p}) = ρns ({q},
{p}, –∞), nc ({q}, {p}, t – x; {q′}, {p′}) are the
Liouville space Green functions,

 (A2)

are the “intramolecular” (M) absorption (1) or lumines-
cence (2) spectra of a solute molecule.

We assumed that ε(x) ≡ 0 for –∞ < x ≤ 0 when
deriving eq A1. Equation A1 is a central result of the
theoretical part of this work. It generalizes eq 37 of ref
10 to a non-Markovian random perturbation which can
be represented by multidimensional Markovian pro-
cesses.

Let us consider a special case of “biphasic” relax-
ation. We want to know how “biphasic” decay of the
correlation function changes the dynamics of molecular
optical transitions in the field of intense ultrashort chirped
pulses. In a number of experimental works, an exponential
fit was used for the fast component of the solvation corre-
lation function.36 Rigorous treatment of a biexponential
correlation function is possible by the two-dimensional
Markovian reaction-diffusion equation:35 Lns = ∑j = 1,2 Lnsj

= ∑j =1,2  where Lns is the
Fokker–Planck operator describing a diffusion in a two-
dimensional potential Uns (q1, q2) = En + 1

2 ∑j = 1,2 ω2
j (qj –

δn2dj)2. A differential equation for the quantity ρns(q1, q2,
t) can be obtained similar to eq 42 of ref 10:

(A3)

where ω21 = ω21
el + ωst/2 is the frequency of the Franck–

Condon transition 1 → 2 with respect to the configura-
tion coordinates related to q1 and q2, ωst = ∑j =1,2ωstj =
∑j =1,2ω2

jd2
j / –h is the contribution of the vibrations q1 and

q2 to the Stokes shift of the equilibrium absorption and
luminescence spectra,

  

(A4)

and τsnj = σ2sj/ 
~
Dnj is the jth correlation time in state n.

Here we introduced a new variable, αj = qjdjω2
j/ –h, so that

ρns (q1,q2,t)dq1dq2 =  ~ρns(α1,α2,t)dα1dα2.
Solution of the two-dimensional Markovian reac-

tion-diffusion equation, eq A3, is a much more complex
problem than that of a one-dimensional equation. How-
ever, in order to take into consideration that, for a
“biphasic” relaxation, the corresponding times differ
greatly, the problem under consideration can be reduced
to a one-dimensional one. Let us consider a frequently
occurring situation where the duration of an ultrashort
chirped pump pulse is of the same order of magnitude as
that of the fastest relaxation component (q1), but much
shorter than the slow relaxation (q2). Then eq A3 is
reduced to

(A5)

Eq A5 is a one-dimensional diffusion equation depend-
ing parametrically on the slow coordinate α2. It will be
used for describing experimental results elsewhere.

Knowing the density matrix ~ρns(α1,α2,t), one can cal-
culate the amplitude of the positive frequency compo-
nent of the polarization P+ (t) by generalization of equa-
tion 12 of ref 8 to a two-dimensional case



Israel Journal of Chemistry 44 2004

52

(A6)

Substituting the last equation into eq 4, we obtain for ψ
= 0

(A7)

where  ~ρns
N

 
L (α1,α2,t) is the deviations of ~ρns(α1,α2,t) from

its equilibrium value

(A8)

where σ2si = ωstikBT/ –h. For one normal intramolecular
oscillator of frequency ω0 whose characteristic func-
tions are determined by eq 16, we obtain from eq A7

(A9)
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