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Communication

Diagram Technique for Nonlinear Optical Spectroscopy in the Fast
Electronic Dephasing Limit

B. D. Fainberg
Holon Academic Technological Institute, Department of Exact Sciences, 52 Golomb St., Holon 58102, Israel

We show that applying the double-sided Feynman diagrams to systems with fast electronic dephasing
opens up new possibilities for using this technique in resonance nonlinear optical spectroscopy. The novel po-
tentials are including non-perturbative system-bath interactions (non-Markovian relaxation) and the summa-
tion of diagrams. The last procedure enables us to obtain new equations for a nonperturbative description of the

light-matter interaction.

INTRODUCTION

The diagrammatic technique for the evaluation of den-
sity matrix elements (the double-sided Feynman diagrams)'™
is of considerable current use for the analysis of nonlinear op-
tical processes.”” However, the efficiency of this approach is
confined to a simple picture of damping when the impact ap-
proximation or the approximation of a weak relaxation inter-
action are correct. This approach does not take into account
the memory (non-Markovian) effects in relaxation. This is not
the case, for example, for electron-vibrational systems (com-
plex molecules, impurity centers in a crystal, etc.) where re-
laxation interactions are not weak, and the perturbation theory
with respect to system-bath interactions is incorrect. Using
the double-sided Feynman diagrams for such systems results
in formal operator expressions, the calculations of which in
the resonance case are very cumbersome if the processes un-
der consideration are of the order higher than 4.

Furthermore, each rational diagrammatic technique
must enable us to make the graphical summation of diagrams.
However, to our knowledge, there is not any information
about such potentials of the double-sided Feynman diagrams
in the literature. Therefore, the technique was not used for a
nonperturbative description of the light-matter interaction.
This 1s unfortunate since the problem of a nonperturbative de-
scription of the interaction of strong pulse radiation with large
molecules in solutions is the topic of active recent research.®°
Especially, such a problem is of great interest for interaction
of phase modulated (chirped) pulses with molecular systems
because it is one of the powerful and promising methods de-
veloped recently for study and control of processes in con-
densed matter.”"”

In this study we show that applying the double-sided
Feynman diagrams'™ to systems with fast optical dephasing
opens up new possibilities for using this technique in ultrafast
resonance spectroscopy. The novel potentials are including

nonperturbative system-bath interactions (non-Markovian re-
laxation) and the summation of diagrams. In the communica-
tion we outline some of the preliminary results. A full account
of this study will be given elsewhere.

DIAGRAMMATIC TECHNIQUE FOR FAST OPTICAL
DEPHASING

Let us consider a molecule with three electronic states »
=1,2,3 in a solvent described by the Hamiltonian

Hy=Y |n>E, +17,(Q)]<n M

where E3>E>>Ey, E, 1s the energy of state », J¥/ (Q) is the adi-
abatic Hamiltonian of reservoir R (the vibrational subsystems
of a molecule and a solvent interacting with the three-level
electron system under consideration in state # ).

The molecule is affected by electromagnetic radiation of
a number of beams

E(r.,))=E*(r,))+E " (r,1)
:%zEm(t)eXp[i(kml‘—wmt)]+c.c. )

Electromagnetic field (2) induces an optical polarization in
the medium P(r,t) which can be expanded in powers of E(r,
t)4 :

P (r,t) =N <Tr,(Dp™ (1)) >,, 3)
where N is the density of particles in the system; D is the di-

pole moment operator of a solute molecule; {... o denotes av-
eraging over the different orientations of solute molecules;
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™ is the density matrix of the system calculated in #-th ap-

p

proximation with respect to E(r, 7). The density matrix satis-
fies the Liouville equation:

m%_f C[Hy+H'(1).p] @)

where H ’()=-DE(r,?).
We consider only resonance light-matter interactions.

We assume that a strong pump %E(r, nHexp(-iwf) +c.c. acts at

the electronic transition 1—2, and a weak probe resonance

field %Epr(t — Dexpli(k'r —iw'(t — T))] + c.c. delayed by a

variable 1 acts at the same or another transition (2—3) and
does not overlap in time with the pump, 1. e.

S E.(t) expli(kr —@.0)] = E(r.1)exp(-ior)

+ Ep'(t -tyexplitk'r —ia'(t —1))]

where E(r, H= E(t) 2, exp(ikr). To include the phase modu-
lated (chirped) pump in our technique, we present the pump
field amplitude E(¢) in the form ?

E@) =€) exp(io()), )

where €(2) and @) are real functions of time, and ¢(?) de-
scribes the change of the pulse phase in a time 7. The instanta-
neous frequency of the pump pulse is determined by w(f) = w—
do()
dt

We consider the case of appreciable Stokes losses when
the perturbation of the electronic system by a nuclear one un-
der electronic excitation 1—2 (a quantity V(Q) = W»(Q) -
W;(0)) 1s large. It corresponds to the fast electronic dephasing
limit. In the last case one can consider the density matrix diag-
onal with respect to electronic indices p..(f). The last one can
be represented as the sum of the even approximations with re-
spect to the amplitude of an external field:

P, (D)= io P () 6)

Where p,,/(£)=p,,(->).
We introduce the rectangular vertices (Fig. 1) presenting
the interactions between the system and the relevant pair of

fields. These rectangular vertices are the sums of two sub-
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diagrams corresponding to the nondiagonal density matrix el-
ements in technique,’ since the main processes occurring in a
system with fast optical dephasing are related to none-
quilibrium luminescence and absorption. Introducing such
vertices strongly diminishes a number of the diagrams under
consideration.

Damping is included as a random perturbation by a
Markovian process (diffusional or discontinuous) in the con-
figuration coordinate space in the relevant electronic state. In-
troducing the configuration coordinate ¢ corresponds to a re-
duced description, when g represents only a partial set of coor-
dinates related to optically active modes which give a contri-
bution to V(Q). As this takes place, the relaxation itself is not
Markovian since a system-bath interaction can be strong. A
Markovian nature of a random perturbation enables us to write
easily an expression for the corresponding diagram in any or-
der with respect to the light-matter interaction. It can be done
using the corresponding Liouville space Green functions
Gn(g, 1 q ) which give the density of the conditional probabil-
ity in electronic states n=1,2 for a Markovian process. They
satisfy the following equation:

a ' ' '
[5 ~L, ij(q,t;q )=0.  G,(¢.:4)=8(q—9")
where L, is the Liouville operator in the configuration coordi-
nate space.

Double-sided Feynman diagrams for fast optical
dephasing

Let us consider the density matrix diagonal with respect
to electronic indices p,,(?). It is represented by two vertical
lines. The left line represents the ket- [#> and the right line
represents the bra-vector <u|. We can state the following rules
for the double-sided Feynman diagrams for fast optical
dephasing and a Markovian random evolution in the configu-
ration coordinate space:

1. The system evolution depends only on “even” times.
Time increases from bottom to top (see Fig. 2).

2. The interactions between system and the pump fields
of frequency o are presented by three types of the rectangular

1>, <1
[2> | |<2 @l @
® ® @
1> < 2> <2
a) b} )

Fig. 1. Three types of rectangular vertices with double
horizontal lines.
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vertices (see Fig. 1). The vertex of the a) type corresponds to
electronic transition 1—2, the vertex of the b) type - to elec-
tronic transition 2—1, and the vertex of the ¢) type does not
change an electronic state.

3. Interactions with applied pump fields are labelled by
the pairs of arrows. The contributions from the j -th vertices of
the a) , b) and ¢) types in Fig. 1 are equal to

T .
a)=b)=—c) :WV)EG T ~ oy = =Ty ) [ expliCh, =k )r]

XY 1 [q,(t T3 =Ty = =Ty

where the wave vector k& corresponds to the arrow in the cor-
responding pair pointing to the right, and the wave vector &y~

corresponds to the arrow in the pair pointing to the left; V'(g:)

:d—V|q:qi, qi(t - T') are the solutions of the following equation:

dq

a(t-1") -5 -V(g)/h=0 &)

4. The overall wave vector of each diagram is the sum of
all ky minus the sum of all &y Zyk;-Zyk;-.

5. The system evolution between adjacent rectangular
vertices j and j+1 along the double vertical line in electronic
state n 1s described by the corresponding Liouville space
Green function Gne(q: (- Tam-...- T2j+2), T2i; ¢i(f-Tom=...- T2j)).
The evolution of the system in a last “even” time Tom 1s de-
scribed by the term Gue(q, Tom; g:i(F-Tom))-

6. The contribution from each diagram to p>™(¢) is ob-
tained by integration with respect to all times 1, T4, ..., Tom.

For example, contributions from the diagrams shown in
Fig. 2 are equal to

(2¢-ne1) __m 1 T _ 2 T
PR N(g,1) = ‘O[duojdrz S| PE—)F
X|DE(t -1, -1, [ 5" (g, 1,.7,)

(10)
Where

r [2> <2 [2> <2
4

w

® @ @
T 12>]1<2| [1>11<1]

®
@ & ®
11> < [1> <1

Fig. 2. The fourth order contribution to p22(?).
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P (@) =W g, =TI GaulguTaig, (- T,))
xAYF g0 -7, ~ )]

XGnc(qj(t_ ‘[4)’ IZ;qi(l _‘54 _‘52))
X p(g, =Ty —T5),—00),

an

-1

png".—=) = (%]/ exp[— BUl(q”):( Jexp[_BUl(Q)]dQJ

(12)

is the equilibrium density matrix of the ground state 1, § =
1/(kT), Ui 1s the potential energy in the electronic state 1.

Summation of diagrams

Only three types of the rectangular vertices exist (Fig.
1). The last enables us to make the graphical summation of di-
agrams (see Fig. 3). Two thick vertical lines correspond to the
complete density matrix.

The diagram equations displayed graphically in Fig. 3
for n =1 and 2 can be written analytically as

0 (@1) = P, (g o)+ (=1)" % j dv'| DE(t -1
XBY W gt =) G754, =T))
X[P (g, =)t =T) =Py (g, (t =Tt =TN] (13)

In doing so we obtain new equations for a nonperturbative
description of the light-matter interaction'® and rediscover

T’ [1> <1 [1> <1
= + +
12> [{<2|
1> < 1t Ky 11>

T’ 2> <2 [2> <2

|
= /ﬁ]\ +
2> ¢ [1>¥ % 12>88¢2|

Fig. 3. Graphic summation of diagrams for p;;(¢) and

p22(1).
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also known results.

CONCLUSION

In this communication we have outlined some of the
preliminary results concerning the application of the dou-
ble-sided Feynman diagrams to systems with fast electronic
dephasing. We have formulated the diagrammatic technique
for fast optical dephasing by introducing the rectangular verti-
ces, which are the sums of two subdiagrams corresponding to
the nondiagonal density matrix elements in technique.’
Damping is included as a random perturbation by a Markovian
process (diffusional or discontinuous) in the relevant elec-
tronic state. As this takes place, the relaxation itself is not
Markovian since a system-bath interaction can be strong. A
Markovian nature of a random perturbation enables us to write
easily an expression for the corresponding diagram in any or-
der with respect to the light-matter interaction.

Furthermore, only three types of the rectangular vertices
exist. This point enables us to make the graphical summation
of diagrams and obtain new equations for a nonperturbative
description of the light-matter interaction. These equations
will be used for the generalization and further developments
of a new approach to the description of the interaction of in-
tense ultrashort chirped pulses with molecules in solution: the
picture of “moving potentials”.’

By applying the technique outlined in this work to
non-diffusional Markovian processes, we have shown that the
methods of pump-probe spectroscopy enable us to study the
vibrational coherence induced by relaxation.'”

Finally, the relaxation in Debye solvent provides an ex-
ample of a relaxation corresponding to a random perturbation
of a Markovian nature with the exponential correlation func-
tion. However, as recent studies show, the solvent relaxation
is “biphasic”: its correlation function typically consists of a
fast (femtosecond) and a slower component.'®* “Biphasic”
relaxation provides an example of relaxation corresponding to
a non-Markovian random perturbation. The technique out-
lined in this communication can be extended to relaxation in-
duced by stochastic processes of a non-Markovian nature if
they are represented as multidimensional Markovian pro-
cesses. [t will be done elsewhere.
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