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Communication

Diagram Technique for Nonlinear Optical Spectroscopy in the Fast
Electronic Dephasing Limit

B. D. Fainberg
Holon Academic Technological Institute, Department ofExact Sciences, 52 Golomb St., Holon 58102, Israel

We show that applying the double-sided Feynman diagrams to systems with fast electronic dephasing
opens up new possibilities for using this technique in resonance nonlinear optical spectroscopy. The novel po­
tentials are including non-perturbative system-bath interactions (non-Markovian relaxation) and the summa­
tion of diagrams. The last procedure enables us to obtain new equations for a nonperturbative description of the
light-matter interaction.

DIAGRAMMATIC TECHNIQUE FOR FAST OPTICAL
DEPHASING

Let us consider a molecule with three electronic states n

= 1,2,3 in a solvent described by the Hamiltonian

where N is the density of particles in the system; D is the di­

pole moment operator of a solute molecule; \... )or denotes av­

eraging over the different orientations of solute molecules;

(3)

(2)

(1)

E(r,t) = E+(r,t)+E-(r,t)

1 I-=- E (t)exp[i(k r-(j) t)]+c.c.2 m m m
m

Electromagnetic field (2) induces an optical polarization in

the medium P(r,t) which can be expanded in powers of E(r,
t)4 :

nonperturbative system-bath interactions (non-Markovian re­

laxation) and the summation of diagrams. In the communica­

tion we outline some of the preliminary results. A full account

of this study will be given elsewhere.

where E3 >E2>E1,En is the energy of state n, Wn(Q) is the adi­

abatic Hamiltonian of reservoir R (the vibrational subsystems

of a molecule and a solvent interacting with the three-level

electron system under consideration in state n ).

The molecule is affected by electromagnetic radiation of

a number of beams

The diagrammatic technique for the evaluation of den­

sity matrix elements (the double-sided Feynman diagramsj"

is of considerable current use for the analysis of nonlinear op­

tical processes.Y However, the efficiency of this approach is

confined to a simple picture of damping when the impact ap­

proximation or the approximation of a weak relaxation inter­

action are correct. This approach does not take into account

the memory (non-Markovian) effects in relaxation. This is not

the case, for example, for electron-vibrational systems (com­

plex molecules, impurity centers in a crystal, etc.) where re­

laxation interactions are not weak, and the perturbation theory

with respect to system-bath interactions is incorrect. Using

the double-sided Feynman diagrams for such systems results

in formal operator expressions, the calculations of which in

the resonance case are very cumbersome if the processes un­

der consideration are of the order higher than 4.

Furthermore, each rational diagrammatic technique

must enable us to make the graphical summation of diagrams.

However, to our knowledge, there is not any information

about such potentials of the double-sided Feynman diagrams

in the literature. Therefore, the technique was not used for a

nonperturbative description of the light-matter interaction.

This is unfortunate since the problem of a nonperturbative de­

scription of the interaction of strong pulse radiation with large
molecules in solutions is the topic of active recent research. 6-10

Especially, such a problem is of great interest for interaction

of phase modulated (chirped) pulses with molecular systems

because it is one of the powerful and promising methods de­

veloped recently for study and control of processes in con­

densed matter9
-
1S

In this study we show that applying the double-sided

Feynman diagramsv'' to systems with fast optical dephasing

opens up new possibilities for using this technique in ultrafast

resonance spectroscopy. The novel potentials are including
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m

+Ep.(t --r)exp[i(k'r -io:'(t--r»]

IEm(t) exp[i(~r- romt)] =E(r, t)exp(-irot)

pen) is the density matrix of the system calculated in n-th ap­

proximation with respect to E(r, t). The density matrix satis­

fies the Liouville equation:

diagrams corresponding to the nondiagonal density matrix el­

ements in technique, 1 since the main processes occurring in a

system with fast optical dephasing are related to none­

quilibrium luminescence and absorption. Introducing such

vertices strongly diminishes a number of the diagrams under

consideration.

Damping is included as a random perturbation by a

Markovian process (diffusional or discontinuous) in the con­

figuration coordinate space in the relevant electronic state. In­

troducing the configuration coordinate q corresponds to a re­

duced description, when q represents only a partial set of coor­

dinates related to optically active modes which give a contri­

bution to V(Q). As this takes place, the relaxation itself is not

Markovian since a system-bath interaction can be strong. A

Markovian nature of a random perturbation enables us to write

easily an expression for the corresponding diagram in any or­

der with respect to the light-matter interaction. It can be done

using the corresponding Liouville space Green functions

Gnc(q,t;q) which give the density of the conditional probabil­

ity in electronic states n=1,2 for a Markovian process. They

satisfy the following equation:

(4)in dP = [Ho +H'(t), p]
dt

the electronic transition 1~2, and a weak probe resonance

field ~Epr(t - -r)exp[i(k/r - im/(t - -r))] + c.c. delayed by a

variable t acts at the same or another transition (2~3) and

does not overlap in time with the pump, i. e.

where H '(t)=-DE(r,t).

We consider only resonance light-matter interactions.
1 -

We assume that a strong pump - E(r, t)exp(-iwt) + c.c. acts at
2

- -
where E(r, t) = E(t) LZ exp(ikzr). To include the phase modu-

lated (chirped) pump in our technique, we present the pump

field amplitude E(t) in the form 9

GncCq,t;q') =0(q -q')

E(t) = E(t)exp(i<p(t)), (5)

where Ln is the Liouville operator in the configuration coordi­

nate space.

Where p~~ (t) = Pnn(-oc).

We introduce the rectangular vertices (Fig. 1) presenting

the interactions between the system and the relevant pair of

fields. These rectangular vertices are the sums of two sub-

where £(t) and <p(t) are real functions of time, and <p(t) de­

scribes the change of the pulse phase in a time t. The instanta­

neous frequency of the pump pulse is determined by wet) = w­
d<p( t)

dt

We consider the case of appreciable Stokes losses when

the perturbation of the electronic system by a nuclear one un­

der electronic excitation 1~2 (a quantity V(Q) = W2(Q) ­

W1(Q)) is large. It corresponds to the fast electronic dephasing

limit. In the last case one can consider the density matrix diag­

onal with respect to electronic indices pnn(t). The last one can

be represented as the sum of the even approximations with re­

spect to the amplitude of an external field:

c)b)

~
12> <21

a)

12>Jt21

oo~oo
11> <11

Double-sided Feynman diagrams for fast optical
dephasing

Let us consider the density matrix diagonal with respect

to electronic indices Pnn(t). It is represented by two vertical

lines. The left line represents the ket- In> and the right line

represents the bra-vector <a], We can state the following rules

for the double-sided Feynman diagrams for fast optical

dephasing and a Markovian random evolution in the configu­

ration coordinate space:

1. The system evolution depends only on "even" times.

Time increases from bottom to top (see Fig. 2).

2. The interactions between system and the pump fields

offrequency ware presented by three types of the rectangular

Fig. 1. Three types of rectangular vertices with double
horizontal lines.

(6)Pnn(t) = LP~~m)(t)
m=O
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vertices (see Fig. 1). The vertex of the a) type corresponds to

electronic transition 1~2, the vertex of the b) type - to elec­

tronic transition 2~1, and the vertex of the c) type does not

change an electronic state.

3. Interactions with applied pump fields are labelled by

the pairs of arrows. The contributions from the j -th vertices of

the a) ,b) and c) types in Fig. 1 are equal to

p;;(2<-nH) (q''"(4' 1J = tz IV'[qj(t-1 4)] 1-1 G2c(q,14;qj (t - 14))
j

xtz IV'[q;(t -1 4 -1J] 1-1

xGnc(qj (t - 14),"2;q;(t -1 4 -1J)
X Pll (q; (t -1 4 -1 2 ) , -00),

(11)

a) =b) = -c) =2~21DE (t -'2m -'2m-2 - ... -'2) 1

2exp[i(k" -k,,,)r]

xii 2:, IV' [q,(t -'2m -'2m-2 - ... -'2j)]l-1
i (12)

(10)

where the wave vector kl' corresponds to the arrow in the cor­

responding pair pointing to the right, and the wave vector kr

corresponds to the arrow in the pair pointing to the left; V'(q;)

=dVlq~q;, q;(t _r') are the solutions of the following equation:
dq

Pnn(q,t) = Pnn(q, -oc) +(-lr ---;..Jd t' I DE(t -1' 1
2

2tz 0

xtzIV'[q;(t -'"( ')] 1-1 Gnc(q, t ':« (t - t '))
;

X[Pll (q;(t -1 '),t -'"( ') - P22(q;(t -1 '),t -'"( ')] (13)

In doing so we obtain new equations for a nonperturbative

description of the light-matter interaction'? and rediscover

,I 11> <11 11> <11

1,1 +I!= +

11> <11 11> <11

,I 12) <21

+~fX=

12) <21 12) <21

Fig. 3. Graphic summation of diagrams for Pll(t) and
pdt).

Summation of diagrams

Only three types of the rectangular vertices exist (Fig.

1). The last enables us to make the graphical summation of di­

agrams (see Fig. 3). Two thick vertical lines correspond to the

complete density matrix.

The diagram equations displayed graphically in Fig. 3

for n = 1 and 2 can be written analytically as

is the equilibrium density matrix of the ground state 1, ~ =

lI(k!), Uj is the potential energy in the electronic state 1.

(9)

~
12> <21

00Jf 00

11> <11
00

00

11> <11

:1~2)<21

12> <21

00 00

11> <11

Fig. 2. The fourth order contribution to p22(t).

m(t -1:') -O)~; -V(q)/tz =0

Where

4. The overall wave vector of each diagram is the sum of

all kl'minus the sum of all k-: Ll'k,-Lrkl'o

5. The system evolution between adjacent rectangular

vertices j and j+ 1 along the double vertical line in electronic

state n is described by the corresponding Liouville space

Green function Gnc(q ;{ t - ' 2m- ... - 12j+2), 12j; q;(t-12m- ... - '"(2j)).

The evolution of the system in a last "even" time 12m is de­

scribed by the term Gnc(q, 12m; q;(t-12m)).

6. The contribution from each diagram to p~~m)(t) is ob­

tained by integration with respect to all times 12, 14, ... , '"(2m.

For example, contributions from the diagrams shown in

Fig. 2 are equal to
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also known results."

CONCLUSION

In this communication we have outlined some of the

preliminary results concerning the application of the dou­

ble-sided Feynman diagrams to systems with fast electronic

dephasing. We have formulated the diagrammatic technique

for fast optical dephasing by introducing the rectangular verti­

ces' which are the sums of two subdiagrams corresponding to

the nondiagonal density matrix elements in technique. 1

Damping is included as a random perturbation by a Markovian

process (diffusional or discontinuous) in the relevant elec­

tronic state. As this takes place, the relaxation itself is not

Markovian since a system-bath interaction can be strong. A

Markovian nature of a random perturbation enables us to write

easily an expression for the corresponding diagram in any or­

der with respect to the light-matter interaction.

Furthermore, only three types of the rectangular vertices

exist. This point enables us to make the graphical summation

of diagrams and obtain new equations for a nonperturbative

description of the light-matter interaction. These equations

will be used for the generalization and further developments

of a new approach to the description of the interaction of in­

tense ultrashort chirped pulses with molecules in solution: the

picture of "moving potentials"."

By applying the technique outlined in this work to

non-diffusional Markovian processes, we have shown that the

methods of pump-probe spectroscopy enable us to study the

vibrational coherence induced by relaxation. 17

Finally, the relaxation in Debye solvent provides an ex­

ample of a relaxation corresponding to a random perturbation

of a Markovian nature with the exponential correlation func­

tion. However, as recent studies show, the solvent relaxation

is "biphasic": its correlation function typically consists of a

fast (femtosecond) and a slower component. 18-23 "Biphasic"

relaxation provides an example of relaxation corresponding to

a non-Markovian random perturbation. The technique out­

lined in this communication can be extended to relaxation in­

duced by stochastic processes of a non-Markovian nature if

they are represented as multidimensional Markovian pro­

cesses. It will be done elsewhere.
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