
JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 15 15 OCTOBER 2002
Coherent population transfer in molecules coupled with a dissipative
environment by an intense ultrashort chirped pulse
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We have studied the intense chirped pulse excitation of a molecule coupled with a dissipative
environment taking into account electronic coherence effects. We considered a two-state electronic
system with relaxation treated as a diffusion on electronic potential energy surfaces. This relaxation
model enables us to trace continuously the transition from a coherent population transfer to
incoherent one. An inhomogeneously broadened system with frozen nuclear motion is invoked to
model a purely coherent transfer. We show that the type of population transfer~coherent or
incoherent! strongly depends on the pulse chirp, its sign, and the detunings of the exciting pulse
carrier frequency with respect to the frequency of the Franck-Condon transition. For positive
chirped pulses and moderate detunings, relaxation does not hinder a coherent population transfer.
Moreover, under these conditions the relaxation favors more efficient population transfer with
respect to the ‘‘coherent’’ system with frozen nuclear motion. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1505869#
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I. INTRODUCTION

Selective population transfer with phase-modula
~chirped! pulses has applications in a number of areas, s
as preparation of initial states for spectroscopy,1 optical
quantum control,2–6 and Bose-Einstein condensates.7 In this
work we concentrate on electronic population transfer
molecules coupled with a dissipative environment~solvent!.

The possibility of controlling molecular dynamics usin
properly tailored pulses has been the subject of inten
studies in the last few years.1,8–31 Chirped pulses can selec
tively excite coherent wave packet motion either on
ground electronic potential energy surface of a molecule
on the excited electronic potential energy surface.11,15,21,22In
addition, they are very efficient for achieving populatio
transfer between molecular electronic states. In this rela
Cao, Bardeen, and Wilson32 have numerically shown tha
total electronic population inversion of molecules can
achieved with intense positively chirped~PC! laser pulses
similar to p-pulse excitation of atomic two-level systems.33

Two well-known procedures based on a coherent exc
tion can, in principle, produce complete population invers
in an ensemble of two-level atoms. The first one is the afo
mentionedp pulse excitation. This method makes use of t
Rabi population oscillation. The main disadvantage of
p-pulse excitation is the requirement of resonant laser li
and the need for precise control of the pulse area.3 The sec-
ond procedure, known as adiabatic rapid pass
~ARP!,1,3,33,34 is based on sweeping the pulse frequen
through a resonance. The mechanism of ARP can be
plained by avoided crossing of dressed states as a functio
the instantaneous laser pulse frequencyv(t).3 A scheme
7220021-9606/2002/117(15)/7222/11/$19.00
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based on ARP is robust since it is insensitive to the pu
area and to the precise location of the resonance. There
it has many uses including preparation of entangled stat35

and initial states for Bose-Einstein condensates.7

Electronic population transfer in molecules is in gene
much more complicated than in atoms due to the nuc
motion influence. An ultrashort laser pulse creates a cohe
superposition of many vibronic transitions, and it is impo
sible to satisfy the resonance and area conditions for e
transition, so that thep-pulse excitation of molecules i
highly improbable. However, ARP population transfer
molecules is in principle possible due to the robustness
ARP. It has been demonstrated in I2 vapor.1

Experiments on intense chirped pulse excitation of la
dye molecules in liquid solutions21 showed a strong depen
dence of the excited-state population on the chirp sign. T
results of the above-mentioned experiments have been
plained in terms of the intrapulse pump-dump process.11,15,21

The last can be considered as a single-pulse version of
‘‘pump-dump’’ scheme, originally proposed by Tannor an
Rice, using two distinct laser pulses.36–38In the wave packet
picture, the first field interaction places amplitude on theS1

excited state~Fig. 1!. This amplitude starts to slide down th
potential energy surface. A second field interaction either
bring more amplitude up, creating population in the excit
state, or it can bring the amplitude from the first field inte
action back down to theS0 , creating a displaced hole in th
ground electronic state. Since the wave packet onS1 is mov-
ing from higher optical frequencies to lower, the ground-st
population increases for excitation by negatively chirp
2 © 2002 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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7223J. Chem. Phys., Vol. 117, No. 15, 15 October 2002 Coherent population transfer
FIG. 1. Diagrams of the pump-dump process for neg
tively chirped ~NC! pulse and positively chirped~PC!
pulse excitation. The time of the interaction of the e
cited molecule with light (t2) shortens for PC excita-
tion with respect to that for NC excitation. We use
designations of the time arguments in accordance w
the double-sided Feynman diagrams describing the
trapulse pump-dump process~see Fig. 6 below!.
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~NC! pulses. Thus, a NC pulse creates a nonstation
ground-state component, while a PC pulse increases
excited-electronic-state population.21,22,28In addition, Fig. 1
shows that the time of the interaction of the excited molec
with light shortens for PC pulse excitation with respect
that for NC pulse excitation.

In actual practice all the above-mentioned processes
cur in atomic or molecular systems coupled with a dissi
tive environment. Taking into account relaxation processe
very important even with an incoherent description of t
chirped pulse interaction with molecules. Really, only co
pling with a dissipative environment which gives rise to v
brational relaxation can explain the gain of the red edge
the NC pulse22 observed in the experiment.21

Relaxation processes are of even greater importa
when one considers a coherent excitation of molecules.
cording to popular opinion, the last is possible only if t
pump pulse is much shorter than relaxation times33 or the
probability of the light-induced transitions is much larg
than reciprocal relaxation times. In actual practice these c
ditions are seldom realized upon chirped pulse excitation
complex molecules in solutions. In this connection the f
lowing question arises: Is a coherent excitation of molecu
in solutions with chirped pulses possible if the pulse durat
is of the same order as relaxation times and/or the proba
ties of the light-induced transitions are of the same orde
reciprocal relaxation times?

One of the aims of this paper is to answer this questi
As discussed above, the time of the interaction of the exc
molecule with light shortens for PC pulse excitation w
respect to that for NC pulse excitation. Therefore, the in
ence of the excited-state relaxation on the light-molecule
teraction must depend on the chirp sign. By this means
aforementioned criteria for a coherent excitation of m
ecules must be revised for chirped pulse excitation.

We need a comparatively simple but reasonable mo
describing the excitation of a two-electronic-level molecu
system with a laser pulse in the presence of relaxation. In
relation it is worthy to note that the Landau–Zener mo
describes also the excitation of a two-level system w
constant-intensity radiation, the frequency of which is l
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early swept.31,39,40There are a variety of generalizations
the Landau–Zener problem to decaying states and transit
in the literature.40–44 Unfortunately, such generalizations o
the Landau–Zener model cannot be used for the problem
population transfer in molecules in solutions. For example
the population transfer occurs to an upper level decaying
continuum,40 its population tends to zero after completion
the pulse action whent→`. Thus, other models must b
used for a description of the relaxation of molecules in so
tions as applied to the population transfer problem.

The excitation of a molecule with a strong chirped pu
was studied numerically by Linet al. by a one-dimensiona
displaced harmonic oscillator model with Markovia
relaxation.26 However, the relaxation of large molecules
solutions is non-Markovian. In Refs. 22 and 25 a model
Gaussian–Markovian modulation was used for the desc
tion of relaxation processes in molecules excited with stro
chirped pulses~see also Refs. 45 and 46 devoted to the
teraction of transform-limited pulses with molecular tran
tions!. All these works were limited by, first, the incohere
light-matter interaction as concerns the electronic transit
and, second, the point-transition model~i.e., the electronic
transition occurred at instantaneous intersections of ‘‘pho
nic replication’’ and the corresponding term!. In this work we
discard these limitations. It allows us to consider coher
effects, including into consideration short and fast chirp
pulses of large intensity.

The outline of the paper is as follows. In Sec. II w
present equations for the density matrix of a molecular s
tem under the action of chirped pulses when the interac
with a dissipative environment can be described
Gaussian–Markovian modulation. In Sec. III we solve the
equations for a total model. In Sec. IV we formulate a nu
ber of approaches to it. In Sec. V we present the calcula
results, analyze the physics that underlies the behavior of
approaches to the total model, and compare their behav
with that of the total model. In Sec. VI we summarize o
results. In the Appendix we evaluate the time which a m
ecule spends in the excited state between two sequentia
teractions with light for PC and NC pulse excitation by t
example of a four-photon interaction.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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II. BASIC EQUATIONS

Let us consider a molecule with two electronic statesn
51 and 2 in a solvent described by the Hamiltonian

H05 (
n51

2

un&@En1Wn~Q!#^nu, ~1!

whereE2.E1 , En is the energy of staten, andWn(Q) is the
adiabatic Hamiltonian of reservoirR ~the vibrational sub-
systems of a molecule and a solvent interacting with
two-level electron system under consideration in staten).

The molecule is affected by phase-modulated pulse
carrier frequencyv:

E~ t !5 1
2 EW~ t !exp@2 ivt1 iw~ t !#1c.c., ~2!

where E(t) and w(t) are real functions of time, andw(t)
describes the change of the pulse phase in a timet. The
instantaneous pulse frequency isv(t)5v2 dw/dt.

The influence of the vibrational subsystems of a sol
and a solvent on the electronic transition can be describe
a modulation of this transition by low-frequency~LF! vibra-
tions $vs%.

47,48 In accordance with the Franck–Condon pri
ciple, an electronic transition takes place at a fixed nuc
configuration. Therefore, the quantityu(Q)5W2(Q)
2W1(Q)2^W2(Q)2W1(Q)&1 is the disturbance of nuclea
motion under an electronic transition. Herê &n

[TrR( . . . rRn
) denotes the trace operation over the reserv

variables in the electronic staten,

rRn
5exp~2bWn!/TrR exp~2bWn!, b51/kBT.

The electronic transition relaxation stimulated by LF vibr
tions is described by the correlation functionK(t)
5^u(0)u(t)& of the corresponding vibrational disturban
with characteristic attenuation timets .22,48 We suppose tha
\vs!kBT. Thus$vs% is an almost classical system and o
eratorsWn are assumed to be stochastic functions of time
the Heisenberg representation. The quantityu can be consid-
ered as a stochastic Gaussian variable. We consider
Gaussian–Markovian process whenK(t)/K(0)[S(t)
5exp(2utu/ts). In this case one can obtain the followin
equations for the elements of the density matrix by the g
eralization of the equations of Refs. 22, 45, and 49–53:

]

]t
r12~a,t !2 i ~v212a!r12~a,t !

5
i

2\
D12E~ t !exp@ ivt2 iw~ t !#@r22~a,t !2r11~a,t !#

1
L111L22

2
r12~a,t !, ~3!

]

]t
r j j ~a,t !5~21! j 11~1/\!Im$D21E~ t !

3exp@2 ivt1 iw~ t !#r12~a,t !%

1L j j r j j ~a,t !, ~4!

where a52u/\; v21 is the frequency of Franck–Condo
transition 1→2; i , j 51,2; D is the dipole moment operato
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(D125D21[D); vst is the Stokes shift of the equilibrium
absorption and luminescence spectra;d i j is the Kronecker
delta, and\bs2s5vst , whereb51/(kBT). The terms

L j j 5ts
21F11~a2d j 2vst!

]

]a
1s2s

]2

]a2G ~5!

on the right-hand side of Eq.~4! describe the diffusion with
respect to the coordinatea in the corresponding effective
parabolic potential.22

The partial density matrix of the systemr i j (a,t) de-
scribes the system distribution with a given value ofa at
time t. The complete density matrix averaged over the s
chastic process which modulates the system energy leve
obtained by integration ofr i j (a,t) over a ~the generalized
solvent coordinate!:

^r& i j ~ t !5E r i j ~a,t !da, ~6!

where the diagonal quantities^r& j j (t) are nothing more nor
less than the populations of the electronic states:^r& j j (t)
[nj , n11n251.

III. NUMERICAL SOLUTION OF COUPLED
DIFFERENTIAL EQUATIONS

We solve the coupled equations~3! and~4!, using a basis
set expansion with eigenfunctions of the diffusion opera
L12[(L111L22)/2.51,53,54 Let us switch to the interaction
picture,

r̃21~a,t !5r21~a,t !exp$ i @vt2w~ t !#%, ~7!

and to equations for the components of the pseudos
vector:33

ṽ~a,t !5 i @ r̃21~a,t !2 r̃12~a,t !#,

ũ~a,t !5 r̃12~a,t !1 r̃21~a,t !

w̄~a,t !5r22~a,t !2r11~a,t !. ~8!

The last satisfy the following equations:

]

]t
w̄~a,t !52

D

\
E~ t !ṽ~a,t !1L12w̄~a,t !2dLs~a,t !,

]

]t
ũ~a,t !1@v212v~ t !2a#ṽ~a,t !5L12ũ~a,t !,

]

]t
ṽ~a,t !2@v212v~ t !2a#ũ~a,t !

5
D

\
E~ t !w̄~a,t !1L12ṽ~a,t !,

]

]t
s~a,t !5L12s~a,t !2dLw̄~a,t !, ~9!

where s(a,t)5r22(a,t)1r11(a,t) and dL[(L112L22)/2
5(1/2)ts

21vst]/]a.
In the absence of relaxation (L j j 50), the length of the

pseudospin vector
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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@ ũ2~a,t !1 ṽ2~a,t !1w̄2~a,t !#1/2

5@4ur̃21~a,t !u21r22
2 ~a,t !

22r11~a,t !r22~a,t !1r11
2 ~a,t !#1/2

is conserved:

@ ũ2~a,t !1 ṽ2~a,t !1w̄2~a,t !#1/2

5s~a,t !5s~a,0!5r11
(0)~a!,

where

r i j
(0)~a!5d i j d j 1~2ps2s!

21/2exp@2a2/~2s2s!# ~10!

is the equilibrium value of the density matrix of the syste
before light excitation. But in the presence of relaxati
(L j j Þ0), the pseudospin vector length is not conserved
s(a,t)Þconst. Therefore, we have added an equation
s(a,t) to Eqs. ~9! for the components of the pseudosp
vector.

It is advantageous to use dimensionless magnitude
time t̄[t/ts , a coordinatex5a/s2s

1/2, and a field amplitude
e( t̄ )5tsDE(t)/\. In these terms the Fokker–Planck ope
tor L12 takes a standard formL125]2/]x21(x2x0/2)]/]x
11 anddL5(x0/2)]/]x, wherex0 is the dimensionless shif
between potential surfaces,x05vst /s2s

1/25@\vst /(kBT)#.
To solve the four-coupled equations~9!, we use a basis se
expansion with eigenfunctions of the diffusion operatorL12

~which are proportional to Hermite polynomialsHn„(x
2x0/2)/&…),

L12fn5mnfn , ~11!

with eigenvaluesmn52n, n50,1,2,. . . . Here

fn5
1

Nn
exp~2y2/2!Hn~y/& ! ~12!

are the right eigenfunctions,y5x2x0/2, Nn5A2nn!A2p.
The right eigenfunctionsfn form with the left onesf̂m ,

f̂m5
1

Nm
Hm~y/& !, ~13!

a complete orthogonal and normalized basis s
*2`

1`f̂mfndy5dmn . Therefore, we can expand the solutio
of Eqs.~9! as

ũ~x, t̄ !5 (
n50

`

un~ t̄ !fn~y/& !,

ṽ~x, t̄ !5 (
n50

`

vn~ t̄ !fn~y/& !,

w̄~x, t̄ !5 (
n50

`

w̄n~ t̄ !fn~y/& !,

s~x, t̄ !5 (
n50

`

sn~ t̄ !fn~y/& !. ~14!

Substituting them into Eqs.~9!, we obtain the following in-
finite set of coupled differential equations for the expans
coefficients:
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dun

d t̄
52nun1bAn vn212a~ t̄ !vn1bAn11v n11 ,

dvn

d t̄
52nvn2bAn un211a~ t̄ !un2bAn11 un11

1e~ t̄ !wn ,

dw̄n

d t̄
52nw̄n1

x0

2
An sn212e~ t̄ !vn ,

dsn

d t̄
52nsn1

x0

2
An w̄n21 , ~15!

where a( t̄ )5ts(v212v)2bx0/21mts
2( t̄ 2t0 /ts) and b

5tss2s
1/2. Equations~15! are written for linear chirped pulse

whenw(t)5(m/2)(t2t0)2.
The system of equations~15! has to be truncated at

finite numbern5Nf and then can be integrated numerica
with initial conditions resulting from expansion of the equ
librium state@Eq. ~10!#. This numerical scheme proposed b
Yang and Cukier51 has additional conveniences: the popu
tions of electronic statesn1(t) and n2(t) depend only on
zero-order coefficients,

n1,2~ t !5~2p!1/4~s07w̄0!/25 1
2 @17~2p!1/4w̄0~ t !#,

sinces05(2p)21/4 does not depend ont̄ @see Eqs.~15!#.
The solutions, corresponding to the procedure descri

in this section, are termed the total model for short, bear
in mind that they take into account all relaxations~diffu-
sions! related to electronic coherence and populations in b
electronic states.

IV. APPROXIMATE MODELS

In this section we describe a number of approaches
the total model@Eqs.~3! and ~4!#.

A. System with frozen nuclear motion

For pulses much shorter thants one can ignore all the
terms ;L j j on the right-hand sides of Eqs.~3! and ~4!. It
means that our system can be described as an ensemb
independent two-level systems with different transition f
quencies corresponding to a pure inhomogeneously bro
ened electronic transition. In this case Bloch equations
be integrated independently for eacha. After this the result
must be averaged overa. Solutions of undamped Bloch
equations are interesting from the point of view of the eva
ation of the greatest possible population of the excited s
due to coherent effects, because these solutions ignore a
irreversible relaxations destroying coherence. The appro
under discussion in this section is termed the ‘‘relaxatio
free’’ model for short.

An analytic solution of undamped Bloch equations for
chirped pulse of special shape

E~ t !5E0 sechS t2t0

t D ,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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w~ t !5
g

pt E0

t

tanhS t82t0

t Ddt8

exists.55,56After completion of the pulse action and for initia
condition ~10!, this solution is the following:

r22~a,`!5@cosh2~g/2!2cos2~C/2!#p~g,g0!, ~16!

where C5A(ptDE0 /\)22g2, g0[g0(a)5pt(v212v
2a), and p(g,g0)5A2/(ps2s) exp@2a2/(2s2s)#/(coshg
1coshg0). The total population of the excited electron
state after completion of the pulse action can be obtained
Eq. ~16! where the magnitudep(g,g0) must be substituted
by its integral*p„g,g0(a)…da, i.e.,

n2~`!5@cosh2~g/2!2cos2~C/2!#E p„g,g0~a!…da.

~17!

One can see from Eqs.~16! and ~17! that solutions for
r22(a,`) andn2(`) are symmetric with respect to the sig
of the chirp.

B. Semiclassical „Lax … approximation

Let us return to Eqs.~3! and ~4!. Solving Eq. ~3! for
r12(a,t) and substituting the corresponding expression i
Eq. ~4! for r j j (a,t), we obtain

]

]t
r j j ~a,t !5~21! j 21~2\2!21uD12u2

3ReE
2`

`

da8E
0

`

dxE~ t !E~ t2x!w̄~a8,t2x!

3G12~a,t;a8,t2x!

3exp„2 i $vx2@w~ t !2w~ t2x!#%…

1L j j r j j ~a,t ! ~18!

if E(t)50 for t<0. HereG12(a,t;a8,t8) is the Green’s func-
tion of Eq. ~3!,53,57 which is presented below@see Eq.~22!#.

For broad electronic spectra satisfying the ‘‘slow
modulation’’ limit, we have s2sts

2@1, where s2s

5K(0)\22 is the LF vibration contribution to the secon
central moment of an absorption spectrum. In the last c
electronic dephasing is fast, and one can use a semiclas
~short-time! approximation.58 This limit is also known as the
case of appreciable Stokes losses because the perturbat
the nuclear system under electronic excitation 1→2 ~a quan-
tity W22W1) is large. Then the Green’s functio
G12(a,t;a8,t2x) in Eq. ~18! can be approximated a
G12(a,t;a8,t2x)'exp@i(v212a)x#d(a2a8). Substituting
this equation into Eq.~18!, we obtain Eq.~10! of Ref. 22:

]

]t
r j j ~a,t !5~21! j 21~2\2!21uD12u2

3ReE
0

`

dxE~ t !E~ t2x!w̄~a,t2x!

3exp$2 i @w~ t !2w~ t2x!

1~v212v2a!x#%1L j j r j j ~a,t !. ~19!
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The last equation is equivalent to Eqs.~3! and ~4! if one
ignores the last termr12(a,t)(L111L22)/2 on the right-hand
side of Eq. ~3!, which describes relaxation~diffusion! of
r12(a,t). Therefore, the solutions which correspond to E
~19! are termed the ‘‘partial relaxation’’ model for short.

Calculations for the partial relaxation model can be a
carried out by numerical integration of Eqs.~15! where the
first terms on the right-hand sides of the first and seco
equations~‘‘ 2nun’’ and ‘‘ 2nvn , ’’ respectively! must be
omitted.

C. Equations for population wave packets

Let us consider again the slow-modulation limit an
pulses longer than the irreversible dephasing time of
electronic transitionT85(ts /s2s)

1/3 ~i.e., tp@T8) with a
moderate phase modulation rate whenudv(t)/dtuT8
,(T8)21.22 In addition the pulse intensity is limited by th
condition sa(v21)Jmax!(T8)21 where sa(v21) is the cross
section at the maximum of the absorption band andJ(t)
is the power density of the exciting radiation (Jmax is its
maximum value!, so that A2ps2ssa(v21)J(t)
5\22(p/2)uD12E(t)u2. Then the variablex in Eq. ~18! is of
the order of the relaxation time of the nondiagonal elem
of the density matrix which is aboutx;T8!t for the pulses
under consideration. Therefore, one can disregard them
changing the inversionw̄(a,t) and field amplitudeE(t) in
Eq. ~18! during timex and taking them outside the integr
over x,

]

]t
r j j ~a,t !5~21! j 21E 2~ t !E

2`

`

da8

3I ~a,a8,t !w̄~a8,t !1L j j r j j ~a,t !, ~20!

where we denoted

I ~a,a8,t !5~2\2!21uD12u2 ReE
0

`

dxG12~a,t;a8,t2x!

3exp„2 i $vx2@w~ t !2w~ t2x!#%… ~21!

and

G12~a,t;a8,t8!5@2ps~ t2t8!#21/2expH iv21~ t2t8!

1
s2s~12r !

2~11r !
~ts1ts!

22s2sts~ t2t8!

2
a21a82r 2

2s2s~12r 2!
1 ia

tsr 2ts

11r

2
ia8

11r F ~ts2rt s!1
iar

s2s~12r !G J
~22!

is the Green’s function of Eq.~3!. In Eq. ~22!, r[S(t2t8),
t2t8>0, andts5ts1 ivst /(2s2s)5ts1 ib\/2.

The Green’s function of Eq.~20!,45
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Gj j ~a,t;a8,t8!5@2ps~ t2t8!#21/2exp$2@~a2d j 2vst!

2~a82d j 2vst!S~ t2t8!#2/@2s~ t2t8!#%,

~23!

gives the conditional probabilities for a stochastic Gauss
process. In the last equation,s(t2t8)5s2s(12r 2). Inte-
grating Eq.~20! by Green’s function~23! for the initial con-
dition, Eq. ~10!, we obtain

r j j ~a,t !5r j j
(0)~a!1~21! j 21

3E
2`

`

da8E
0

t

dt8E 2~ t8!E
2`

`

da9

3Gj j ~a,t;a9,t8!I ~a9,a8,t8!w̄~a8,t8!. ~24!

Following the Refs. 51 and 53~see also Refs. 49 an
50!, we will assume that the spatial variation
Gj j (a,t;a9,t9) is much smoother than that ofI (a9,a8,t8).
Therefore, one can approximate the integral overa9
in Eq. ~24! as *2`

` da9Gj j (a,t;a9,t8)I (a9,a8,t8)
'Gj j (a,t;a8,t8)*2`

` da9I (a9,a8,t8)
[Gj j (a,t;a8,t8)K(a8,t8), where

K~a8,t !5E
2`

`

daI ~a,a8,t !

5~2\2!21uD12u2E
0

`

dx cos$~vel2v!x

1@w~ t !2w~ t2x!#2ts@12exp~2x/ts!#

3~a82vst/2!%exp@ f ~x!#, ~25!

f ~x!5s2sts @ 1
2 ts@12exp~2x/ts!#@32exp~2x/ts!#2x#,

~26!

and Eq.~24! can be written in the form

r j j ~a,t !5r j j
(0)~a!1~21! j 21E

0

t

dt8E 2~ t8!E
2`

`

da8

3Gj j ~a,t;a8,t8!K~a8,t8!w̄~a8,t8!. ~27!

The quantityw̄(a8,t8) enables us to calculate the pop
lations of the electronic statesnj (t) when the molecule is
excited with strong chirped pulses. Using Eqs.~23!, ~10!, and
~27!, we obtain

nj~ t !5d1 j1~21! j 21E
0

t

dt8E 2~ t8!E
2`

`

da8

3K~a8,t8!w̄~a8,t8!. ~28!

One can obtain a differential equation for the quant
r j j (a,t). Differentiating both sides of Eq.~27! with respect
to t and bearing in mind that the Green’s functio
Gj j (a,t;a8,t8) satisfies the equations

S ]

]t
2L j j DGj j ~a,t;a8,t8!50,

~29!
Gj j ~a,t;a8,t !5d~a2a8!,

we have
Downloaded 07 Oct 2002 to 130.79.54.138. Redistribution subject to A
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]t
r j j ~a,t !5~21! j 21E 2~ t !K~a,t !w̄~a,t !1L j j r j j ~a,t !.

~30!

The first term on the right-hand side of Eq.~30!,
;E 2(t)K(a,t), describes the radiation transitions betwe
electronic states.

To evaluate the magnitudeK(a,t) @see Eq.~25!#, we
will use a short-time approximation which is applicable
the slow-modulation limit. In doing so, we expandf (x) to
the lowest nonvanishing order inx ~Ref. 53!:

f ~x!'2 1
3 ~x/T8!3. ~31!

Furthermore, one can take into account only the lin
changes of the field phase during timex which is of the order
of the irreversible dephasing timeT8 ~Ref. 22!, w(t2x)
'w(t)2 (dw/dt) x, and expand the arguments of cos(¯ )
in Eq. ~25! to the first order inx. As a result we obtain

K~a,t !'~2\2!21uD12u2E
0

`

dx cos$@v212v~ t !2a#x%

3exp@2 1
3 ~x/T8!3#. ~32!

One can see from Eq.~32! that the functionK(a,t) has
peaks ata5v212v(t), i.e., at instantaneous intersections
‘‘photonic replications’’ with the corresponding electron
states.

In the extreme slow-modulation limit when

As2sT8@1, ~33!

the right-hand side of Eq.~32! can be evaluated as

K~a,t !'
p

2\2 uD12u2d„v212v~ t !2a…. ~34!

Then Eq.~30! along with Eq.~34! coincides with Eq.~11! of
Ref. 22. The last one can be reduced to integral equa
~17! of Ref. 22 for a dimensionless quantityD(t)
52A2ps2sw̄„v212v(t),t….

V. RESULTS AND DISCUSSION

We consider linear chirped pulses of the form

E~ t !5E0 exp@2 1
2 ~d22 im!~ t2t0!2#. ~35!

If chirped pulses are obtained by changing the separatio
pulse compression gratings, the parametersd andm are de-
termined by the formulas21,22

d252$tp0
2 1@2F9~v!/tp0#2%21,

m524F9~v!@tp0
4 14F92~v!#21, ~36!

where tp05tp0 /A2 ln 2, tp0 is the pulse duration of the
corresponding transform-limited pulse, andF9(v)
5F9(n)/(4p2) is the phase term.

First, we illustrate our calculations, with Figs. 2, 3, and
presenting the density matrixr i j (x, t̄ ) for ‘‘coherent’’ mod-
els: ‘‘relaxation-free,’’ ‘‘partial relaxation,’’ and total models
respectively, and the value ofF9(n) is equal to F9(n)
550 000 fs2. The values of the parameters were the follo
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ing: tp0511 fs, As2s5546 cm21, and Q8[sa(v21)Jmaxtp
55 ~the saturation parameter!. One can see a gradual dec
of the initial population wave packetsr11(x, t̄ ) for these
models~with superimposed small oscillations for the part
relaxation model!. Correspondingly, the excited-state pop
lation wave packetsr22(x, t̄ ) increase. It is worthy of note
that in spite of a quite different behavior of the coheren
~nondiagonal density matrix elements! for the partial relax-
ation and the total models, their population wave pack
r j j (x, t̄ ) behave much alike.

Let us study the influence of the chirp rate on t
excited-state populationn2 after the completion of pulse ac

FIG. 2. Dynamics of the density matrixr i j (x, t̄ ) for the relaxation-free
model according to Eqs.~3! and ~4! without terms describing diffusion.

FIG. 3. Dynamics of the density matrixr i j (x, t̄ ) for the partial relaxation
model according to Eqs.~3! and ~4! without the diffusion term in Eq.~3!.
The correlation time ists570 fs. Other parameters are identical to those
Fig. 2.
Downloaded 07 Oct 2002 to 130.79.54.138. Redistribution subject to A
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tion. Figure 5 shows the calculation results ofn2 as a func-
tion of F9(n) for different detunings of the exciting puls
carrier frequencyv with respect to the frequency of th
Franck–Condon transitionv21, corresponding to ‘‘coherent’
models~the relaxation-free, partial relaxation, and total mo
els!.

One can see a strong dependence of the excited-
populationn2 on chirp sign induced by the relaxation~the

f

FIG. 4. Dynamics of the density matrixr i j (x, t̄ ) for the total model accord-
ing to Eqs.~3! and ~4!. The parameters are identical to those of Fig. 3.

FIG. 5. Excited-state populationn2 after the completion of the pulse actio
as a function ofF9(n) for the total~solid lines!, partial relaxation~dashed
lines!, and relaxation-free~dotted lines! models. Frequency detuning (v
2v21)/vst521 ~a!, 20.5 ~b!, 0 ~c!, 0.5~d!, and 1~e!. Other parameters are
identical to those of Fig. 3.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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partial relaxation and total models which give very simi
results! for positive detuningsv2v21, whereasn2 does not
depend on chirp sign for the relaxation-free model. For ne
tive detuningsv2v21 the asymmetry of then2(F9(n)) de-
pendence with respect to the chirp sign diminishes@Fig.
5~a!#.

For moderately large positiveF9(n).10 000 fs2 the
excited-state populationn2 reaches about 1 forQ855 and
then slightly diminishes, remaining close to the value giv
by the relaxation-free model.

A. Criterion for ARP in the relaxation-free model

To understand the behavior shown in Fig. 5, we w
discuss first the relaxation-free model. The last is an
semble of noninteracting two-level systems with transit
frequenciesv212a. We will consider strongly chirped
pulses when the pulse duration is much larger than that of
transform limited one. Then~see Refs. 59 and 60!

2uF9~v!u@tp0
2 . ~37!

For these conditions the ARP criterion for a two-lev
system1 is the following:

Udv~ t !

dt U!uV~ t !u2, ~38!

where V(t)52DE(t)/\, and we assumed the resonan
conditions; i.e., equalityv212a5v(t) is realized for anya
at a definite instant of time.

For linear chirped pulses determined by Eqs.~35! and
~36!, we obtain, from Eq.~38!,

Q8@
1

4tp0
A p

s2s
ln 2. ~39!

If tp0511 fs andAs2s5546 cm21, it corresponds to the
value of Q8@1/2 which conforms to the value ofQ855
used in our calculations. Thus, the complete populat
transfer to the excited electronic state observed in our si
lations for the relaxation-free model when detuningv2v21

50 can be explained by ARP.
According to Eq.~39!, the ARP criterion for the excita

tion of the relaxation-free model with strongly chirped puls
is determined by the saturation parameterQ8 only ~which is
proportional to the pulse energy! and does not depend on th
phase termF9(v). The point is that both the chirp rate an
the pulse intensity decrease as 1/uF9(v)u in the conditions
under consideration@see Eqs.~35!, ~36!, and ~37!#, and the
fulfillment of inequality ~38! is not affected byF9(v).

B. ARP-like behavior in partial relaxation
and total models

The same criterion may be used also for the partial
laxation and the total models if the pulse duration is mu
smaller than the relaxation times. According to Fig. 5, the
models give the value ofn2.1 for moderately large positive
F9(n).10 000 fs2 when the pulse chirp can be consider
as strong@see Eq.~37!#. However, under these conditions th
pulse durationtp556 fs is of the same order as the corre
tion time ts570 fs. At the same time the value ofn2 is
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essentially smaller than 1 for negativeF9(n)
.210 000 fs2. It means that suppressing ARP by relaxati
is essentially reduced for a positive chirp and detuningsv
2v21'0, and as the consequence, the system behavior
proaches a coherent one. This conclusion is supported
analytical considerations as well~see the Appendix!.

It is evident from the evaluations made in the Append
that the time which a molecule spends in the excited s
(t2) between two sequential interactions with light~see Fig.
6!, shortens for PC pulse excitation with respect to that
NC pulse excitation when detuningv2v2150. Moreover,
the timet2 is essentially smaller than the correlation timets

for PC pulse excitation. It has two consequences. First,
four-photon contribution to the excited-state populati
n2

(4)(`) @see Eq.~A3!#, which is responsible for the pump
dump process~see Fig. 6!, is smaller for PC pulse excitation
with respect to that for NC pulse excitation. Second,the
relaxation effects on a coherent behavior of the system
be smaller for PC pulse excitation. When the pulse intensity
increases, the light-induced transitions can overcome the
laxation effects, and the system behavior will be close to t
of a system without relaxation. Since the relaxation effe
for PC excitation are smaller, it is easier for light-induc
transitions to overcome them than those for NC excitati
Thus, the system behavior for PC excitation with moderat
strong pulses is closer to that of a system without relaxa
than the behavior for NC excitation.

Due to relaxation processes@the spike diffusion along
the excited state potential~see Fig. 1!#, the time which a
molecule spends in the excited state between two seque
interactions with light for PC pulse excitation and detuni
v2v2150 shortens with respect to that for a system witho
relaxation. Therefore, the dump process for the total mode
less effective than that for the relaxation-free model. Cor
spondingly, the curve of Fig. 5~c! which corresponds to the
total model is slightly higher than that associated with t
relaxation-free model for large positiveF9(n).0.

C. Incoherent regime described by equations
for population wave packets

Generally speaking, a strong dependence ofn2 on chirp
sign for positive detuningsv2v21 can be explained also b
the pump-dump process for population wave packets,

FIG. 6. Double-sided Feynman diagrams for resonance four-photon inte
tion describing the intrapulse pump-dump process.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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taking in consideration electronic coherence~Ref. 22!. How-
ever, such an incoherent process fails to explain the valu
n2.1 for F9(n).10 000 fs2. To show this, we present in
Fig. 7 dependenciesn2„F9(n)… calculated by the balanc
equation~30! and for the point-transition model of Ref. 22 a
well. One can see that the value ofn2 calculated by the
‘‘incoherent’’ models for F9(n).10 000 fs2 is essentially
smaller than 1 forQ855.

It stands to reason that an incoherent model correspo
ing to equations for population wave packets~EPWP! is in-
correct for Q8[sa(v21)Jmaxtp55 and F9(n).10 000 fs2

when the probability of the light-induced transition
sa(v21)Jmax is of the same order as the reciprocal irreve
ible dephasing time of the electronic transitionT821. This
model becomes correct for largerF9(n) when the pulse du-
ration tp increases and, correspondingly, its intensity d
creases. Therefore, curve 4 of Fig. 7~b! nears curve 3 for
large positiveF9(n). The smaller the saturation paramet
(Q852), the smaller the region where EPWP’s and the to
models give different results for positiveF9(n).0 @Fig.
7~a!#.

For NC excitation@F9(n),0# the corresponding region
is essentially smaller@the incoherent models agree satisfa
torily with the total model forF9(n),215 000 fs2). The
last point is also explained by the fact that a positive chirp
favorable for ARP.

When F9(n).10 000 fs2, the magnitude ofn2 is
slightly less and approaches that of the relaxation-f
model. Certainly, there are no coherent effects for very la
F9(n) when the pulse duration is essentially larger than
relaxation timets . However, a ‘‘three-level scheme of las
pumping’’ is realized for these conditions. Really, f
positive detuningsv2v21 a pulse excites a Franck–Condo
state that relaxes very fast to lower vibrational levels

FIG. 7. Excited-state populationn2 after the completion of the pulse actio
as a function ofF9(n) for ‘‘coherent’’ and ‘‘incoherent’’ models: the
relaxation-free~1!, partial relaxation~2!, total ~3!, EPWP~4!, and point-
transition models of Ref. 22.~5!. Frequency detuning (v2v21)/vst50. The
saturation parameterQ852 ~a! and 5 ~b!. The values ofn2 given by the
point-transition model differ about by 10% from those of the EPWP mo
of Eq. ~25! ~the first are smaller!. At the same time the behavior describe
by both incoherent models is similar.
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electronic state 2 and molecules collect in the exci
electronic state. If the saturation parameterQ8@1, the popu-
lation of state 2 will be close to 1 after completion of th
pulse action.

VI. CONCLUSION

In this work we have studied electronic coherence
fects on population transfer with intense ultrashort chirp
pulses in molecules coupled with a dissipative environme
We considered a two-state electronic system with relaxa
treated as a diffusion on electronic potential energy surfa
This relaxation model has enabled us to trace continuou
the transition from a coherent population transfer to incoh
ent one. We believe that such a simple model properly
scribes the main relaxation processes related to overdam
motions occurring in large molecules in solutions. Therefo
this model can be considered as a basic one for the stud
the dissipative environment influence on a coherent exc
tion of a molecule by a chirped pulse.

A number of approaches were invoked to model a pur
coherent~the relaxation-free model! or incoherent~EPWP!
transfer. A comparison between the total model behavior
those of the approaches to it has shown that the type
population transfer~coherent or incoherent! strongly depends
on the pulse chirp, its sign, and the detunings of the excit
pulse carrier frequencyv with respect to the frequency o
Franck–Condon transitionv21. For positive chirped pulses
and moderate detunings, relaxation does not hinder a co
ent population transfer due to ARP. Moreover, under th
conditions the relaxation favors more efficient populati
transfer with respect to the coherent with frozen nuclear m
tion ~the relaxation-free model!. This conclusion is supported
by analytical considerations as well~Appendix!.

Figure 7 makes it clear that the region where a coher
population transfer takes place is asymmetric with respec
the chirp sign. By these means the usual criteria for a co
ent excitation of molecules must be revised for chirped pu
excitation.

Using a number of models allowed an understanding
the role of different relaxation processes in population tra
fer. First, the problem was solved by the full systems of
diffusional Markovian equations~3! and ~4! for the density
matrix of the electronic system~the total model!. Second, we
used a semiclassical short time~Lax! approximation@Eq.
~19!# ~the partial relaxation model!. Good agreement be
tween calculation results for the partial relaxation and
total models in the slow-modulation limit shows that a sp
cific form of the relaxation term in Eq.~3! for nondiagonal
elements of the density matrix is not important. By the
means the limits imposed on the last equation61,62 are of no
practical importance for the problem under consideration
the slow-modulation limit. In addition, we checked the vo
Neuman condition during our calculations according to
total model and did not find any violations of it.

In our paper we are concerned mainly with the slo
modulation limit. However, the approach to the problem d
veloped in this paper is also applicable to cases of inter
diate or fast modulation whens2sts

2&1.

l
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APPENDIX: CHIRP INFLUENCE ON RELAXATION
EFFECTS

Let us consider the chirp influence on relaxation effec
We shall integrate Eq.~19! using its Green’s function
Gj j (a,t;a8,t8) @Eq. ~23!# for initial condition ~10!. As a re-
sult we obtain, forj 52,

r22~a,t !52~2\2!21uD12u2E
0

t

dt8E
2`

`

da8E
0

t8
dx

3Re$E* ~ t8!E~ t82x!exp@2 i ~v212v

2a8!x#%w̄~a8,t82x!G22~a,t;a8,t8!. ~A1!

Integrating the last equation with respect toa and using Eq.
~21! of Ref. 22 and Eq.~6!, we have

n2~`!5~N\!21E
0

`

dt Im$E* ~ t !P1~ t !%; ~A2!

i.e., the excited-state population after the completion of
pulse action is expressed in terms of the positive-freque
component of the polarizationP1(t). HereN is the density
of particles in the system.

The lowest-order polarization that describes the pum
dump process is a cubic oneP(3)1(t). The corresponding
two-sided Feynman diagrams are shown in Fig. 6. The qu
tity P(3)1(t) has been calculated in Refs. 22 and 63
Gaussian pulses with the linear chirp@see Eq.~35!# and small
changing the complex field amplitudeE(t) in a time
;s2s

21/2. Substituting the corresponding value forP(3)1(t)
into Eq. ~A2!, we obtain
th
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n2
(4)~`!5~8N\!21E

0

`

dtuE~ t !u2E
0

`

dt2uE~ t2t2!u2

3Im x (3)
„v~ t !,t,t2…, ~A3!

where x (3)
„v(t),t,t2… is the cubic susceptibility. It can be

represented as a sum of two terms:

x (3)~v~ t !,t,t2!5(
j 51

2

x j
(3)~v~ t !,t,t2!, ~A4!

where the indexj shows that the corresponding quantiti
are related to nonequilibrium processes in absorpt
( j 51) or emission (j 52).

The contributionsx j
(3)
„v(t),t,t2… to the cubic suscepti-

bility ~A4! can be written in the form

x j
(3)
„v~ t !,t,t2…

52 iD 4~2p3!1/2N\23
„s8~t2!…21/2F1

e
„v~ t !…w~zj !.

~A5!

Here F1
e
„v(t)…5(2ps2s)

21/2exp$2@v(t)2v21#
2/(2s2s)% is

the equilibrium absorption spectrum of the system un
consideration at the frequencyv(t),

w~z!5exp~2z2!F11~2i /Ap!E
0

z

exp~ t2!dtG
is the error function of the complex argument,64 ands8(t2)
is the time-dependent central second moment of the cha
related to nonequilibrium processes in the absorption~hole!
and the emission~spike! spectra@see Eq.~B16! of Ref. 22#.
For strongly chirped pulses one can ignore terms;d2 in the
equation forzj ,65 and the quantityzj

2 can be approximately
written as
the
zj
25

H @v2m~ t2t0!2v211d j 2vst#sinh~t2/2ts!2
1

2
mt2 exp~2t2/2ts!J 2

s2s@sinh2~t2 /ts!1~m/s2s!
2# Fsinh~t2 /ts!2 i

m

s2s
G . ~A6!

One can see from Eq.~A6! that the real part Rezj
2 is positive, i.e., Rezj

2.0, and determines an exponential attenuation of
function w(zj ) due to relaxation processes.

Let us evaluate the ratio of Rezj
2 for PC (m,0) and NC (m.0) when detuningsv2v2150. Using Eq.~A6!, we obtain

Rezj
2~m,0!

Rezj
2~m.0!

5
$@~ t2t0!1d j 2vst /umu#sinh~t2/2ts!1~t2/2!exp~2t2/2ts!%

2

$@~ t2t0!2d j 2vst /umu#sinh~t2/2ts!1~t2/2!exp~2t2/2ts!%
2 . ~A7!
One can see immediately from the last equation that
value of the ratio Rez1

2(m,0)/Rez1
2(m.0) is equal to 1; i.e.,

Rez1
2 does not depend on the chirp sign.
If t2!2ts , then
e
zj

2'S t2

2ts
D 2 @d j 2vst2m~ t2t01ts!#

2

s2sF ~t2 /ts!
21S m

s2s
D 2G Ft2 /ts2 i

m

s2s
G
~A8!
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and

Rezj
2~m,0!

Rezj
2~m.0!

5F umu~ t2t01ts!1d j 2vst

umu~ t2t01ts!2d j 2vst
G2

. ~A9!

Bearing in mind that the pulse durationtp52Aln 2/d and
using Eqs. ~36!, we obtain the following evaluation fo
strongly chirped pulses:umu'2A2 ln 2/(tp0tp). Then,

Rez2
2~m,0!

Rez2
2~m.0!

5F2~ t2t01ts!A2 ln 2/~tp0tp!1vst

2~ t2t01ts!A2 ln 2/~tp0tp!2vst
G 2

~A10!

for j 52.

In the maximum of the pulse (t5t0) and for pulse duration
tp;ts we have

Rez2
2~m,0!

Rez2
2~m.0!

5F2A2 ln 2/tp01vst

2A2 ln 2/tp02vst
G 2

.

For vst51420 cm21 andtp0511 fs we obtain that the ratio
Rez2

2(m,0)/Rez2
2(m.0).81. We emphasize again that th

last evaluation is correct only fort2!2ts . It can not be the
case for Rez2

2(m.0). In the last situation one ought to use
more general formula~A7!. But nevertheless, the last eval
ation shows that the ratiot2 /ts must be much smaller for PC
than for NC @see Eq.~A8!# because the main contributio
originates from Rezj

2;1.
Evaluating Rez2

2 @see Eq.~A8!# in the maximum of the
pulse fortp;ts;10213 s and the same parameters as befo
one obtains that Rez2

2(m,0)'3(t2 /ts). Since Rez2
2;1, then

the ratiot2 /ts;0.3!1.
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