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Coherent population transfer in molecules coupled with a dissipative
environment by an intense ultrashort chirped pulse
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We have studied the intense chirped pulse excitation of a molecule coupled with a dissipative
environment taking into account electronic coherence effects. We considered a two-state electronic
system with relaxation treated as a diffusion on electronic potential energy surfaces. This relaxation
model enables us to trace continuously the transition from a coherent population transfer to
incoherent one. An inhomogeneously broadened system with frozen nuclear motion is invoked to
model a purely coherent transfer. We show that the type of population trafefeerent or
incoherenk strongly depends on the pulse chirp, its sign, and the detunings of the exciting pulse
carrier frequency with respect to the frequency of the Franck-Condon transition. For positive
chirped pulses and moderate detunings, relaxation does not hinder a coherent population transfer.
Moreover, under these conditions the relaxation favors more efficient population transfer with
respect to the “coherent” system with frozen nuclear motion.2@2 American Institute of
Physics. [DOI: 10.1063/1.1505869

I. INTRODUCTION based on ARP is robust since it is insensitive to the pulse
) . . area and to the precise location of the resonance. Therefore,
‘Selective population transfer with phase-modulated; has many uses including preparation of entangled States
(chirped pulses has applications in a number OE]; areas, sucllq jnitial states for Bose-Einstein condensates.
as_preparation 92 initial states for_ spectrosc Wpt'cfal Electronic population transfer in molecules is in general
quantum controf; ® and Bose-Einstein condensafds this . .
much more complicated than in atoms due to the nuclear

work we concentrate on electronic population transfer ir]motion influence. An ultrashort laser pulse creates a coherent
molecules coupled with a dissipative environméstlveny. " : i ) p =
superposition of many vibronic transitions, and it is impos-

The possibility of controlling molecular dynamics using ~; . .
properly tailored pulses has been the subject of intensivéible to satisfy the resonance and area conditions for each

studies in the last few yeat$€3! Chirped pulses can selec- transition, so that ther-pulse excitation of molecules is
tively excite coherent wave packet motion either on thehighly improbable. However, ARP population transfer in
ground electronic potential energy surface of a molecule omolecules is in principle possible due to the robustness of
on the excited electronic potential energy surfdc€:?1?2n  ARP. It has been demonstrated inviapor*

addition, they are very efficient for achieving population Experiments on intense chirped pulse excitation of laser
transfer between molecular electronic states. In this relatiodye molecules in liquid solutioASshowed a strong depen-
Cao, Bardeen, and Wilséhhave numerically shown that dence of the excited-state population on the chirp sign. The
total electronic population inversion of molecules can beyegylts of the above-mentioned experiments have been ex-
aphjeved with intensg p_ositively ch.irpe(ﬂ’C) laser pulses plained in terms of the intrapulse pump-dump procéd&2?
similar to 7-pulse excitation of atomic two-level systeriis. The last can be considered as a single-pulse version of the

. Two v_veII-I_<n0_wn procedures based on a cohere_nt ex(‘f't"’“pump-dump" scheme, originally proposed by Tannor and
tion can, in principle, produce complete population inversion. . - ~38

. . : Rice, using two distinct laser puls&s:28In the wave packet
in an ensemble of two-level atoms. The first one is the afore- . NP . .
mentioneds pulse excitation. This method makes use of thep'Cture’ the first field interaction places amplitude on $e

Rabi population oscillation. The main disadvantage of theexcited statéFig. 1). This amplitude starts to slide down the

7-pulse excitation is the requirement of resonant laser lighPotential energy surface. A second field interaction either can
and the need for precise control of the pulse &@he sec- Pring more amplitude up, creating population in the excited
ond procedure, known as adiabatic rapid passagétate, or it can bring the amplitude from the first field inter-
(ARP),133334is based on sweeping the pulse frequencyaction back down to th&,, creating a displaced hole in the
through a resonance. The mechanism of ARP can be exground electronic state. Since the wave packeBpis mov-
plained by avoided crossing of dressed states as a function ofg from higher optical frequencies to lower, the ground-state
the instantaneous laser pulse frequeneft).®> A scheme population increases for excitation by negatively chirped
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Negative chirp Positive chirp

FIG. 1. Diagrams of the pump-dump process for nega-
tively chirped (NC) pulse and positively chirpetPC)
pulse excitation. The time of the interaction of the ex-
cited molecule with light ¢,) shortens for PC excita-
o(t-t) o(t-t,) tion with respect to that for NC excitation. We used
designations of the time arguments in accordance with
the double-sided Feynman diagrams describing the in-
trapulse pump-dump proceésee Fig. 6 beloy

o(t-t,-7,)

Energy

Reaction coordinate

(NC) pulses. Thus, a NC pulse creates a nonstationargarly swept3®*°There are a variety of generalizations of
ground-state component, while a PC pulse increases thbe Landau—Zener problem to decaying states and transitions
excited-electronic-state populatiéh???8In addition, Fig. 1  in the literaturé’®=** Unfortunately, such generalizations of
shows that the time of the interaction of the excited moleculéhe Landau—Zener model cannot be used for the problems of
with light shortens for PC pulse excitation with respect topopulation transfer in molecules in solutions. For example, if
that for NC pulse excitation. the population transfer occurs to an upper level decaying into
In actual practice all the above-mentioned processes o@ontinuum?® its population tends to zero after completion of
cur in atomic or molecular systems coupled with a dissipathe pulse action whet— . Thus, other models must be
tive environment. Taking into account relaxation processes isised for a description of the relaxation of molecules in solu-
very important even with an incoherent description of thetions as applied to the population transfer problem.
chirped pulse interaction with molecules. Really, only cou-  The excitation of a molecule with a strong chirped pulse
pling with a dissipative environment which gives rise to vi- was studied numerically by Liet al. by a one-dimensional
brational relaxation can explain the gain of the red edge oflisplaced harmonic oscillator model with Markovian
the NC pulsé observed in the experimefit. relaxation?® However, the relaxation of large molecules in
Relaxation processes are of even greater importancgolutions is non-Markovian. In Refs. 22 and 25 a model of
when one considers a coherent excitation of molecules. Adsaussian—Markovian modulation was used for the descrip-
cording to popular opinion, the last is possible only if thetion of relaxation processes in molecules excited with strong
pump pulse is much shorter than relaxation tifdes the  chirped pulsegsee also Refs. 45 and 46 devoted to the in-
probability of the light-induced transitions is much larger teraction of transform-limited pulses with molecular transi-
than reciprocal relaxation times. In actual practice these cortions). All these works were limited by, first, the incoherent
ditions are seldom realized upon chirped pulse excitation ofight-matter interaction as concerns the electronic transition
complex molecules in solutions. In this connection the fol-and, second, the point-transition modgk., the electronic
lowing question arises: Is a coherent excitation of moleculesransition occurred at instantaneous intersections of “photo-
in solutions with chirped pulses possible if the pulse duratiomic replication” and the corresponding ternin this work we
is of the same order as relaxation times and/or the probabilidiscard these limitations. It allows us to consider coherent
ties of the light-induced transitions are of the same order asffects, including into consideration short and fast chirped
reciprocal relaxation times? pulses of large intensity.
One of the aims of this paper is to answer this question. The outline of the paper is as follows. In Sec. Il we
As discussed above, the time of the interaction of the excitegresent equations for the density matrix of a molecular sys-
molecule with light shortens for PC pulse excitation with tem under the action of chirped pulses when the interaction
respect to that for NC pulse excitation. Therefore, the influwith a dissipative environment can be described as
ence of the excited-state relaxation on the light-molecule inGaussian—Markovian modulation. In Sec. Il we solve these
teraction must depend on the chirp sign. By this means thequations for a total model. In Sec. IV we formulate a num-
aforementioned criteria for a coherent excitation of mol-ber of approaches to it. In Sec. V we present the calculation
ecules must be revised for chirped pulse excitation. results, analyze the physics that underlies the behavior of the
We need a comparatively simple but reasonable modedpproaches to the total model, and compare their behaviors
describing the excitation of a two-electronic-level molecularwith that of the total model. In Sec. VI we summarize our
system with a laser pulse in the presence of relaxation. In thigesults. In the Appendix we evaluate the time which a mol-
relation it is worthy to note that the Landau—Zener modelecule spends in the excited state between two sequential in-
describes also the excitation of a two-level system withteractions with light for PC and NC pulse excitation by the
constant-intensity radiation, the frequency of which is lin-example of a four-photon interaction.
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Il. BASIC EQUATIONS (D1,=D,1=D); wg is the Stokes shift of the equilibrium

) ) ] absorption and luminescence spectfg; is the Kronecker
Let us consider a molecule with two electronic states delta, andh Bo,= we;, WhereB=1/(kgT). The terms

=1 and 2 in a solvent described by the Hamiltonian )
J J
2 -1
Lii=7¢ | 1+ (a— djrws) — + 0257 (5)
ji j2Wst 2552
Ho= 2, [M)[Eq+Wn(Q)J(nl, (1) ) da i
_ _ on the right-hand side of Eq4) describe the diffusion with
whereE,>E;, E, is the energy of state, andW,(Q) isthe  respect to the coordinate in the corresponding effective
adiabatic Hamiltonian of reservoR (the vibrational sub- parabolic potentiat?

systems of a molecule and a solvent interacting with the  The partial density matrix of the systep); (,t) de-

two-level electron system under consideration in stgte scribes the system distribution with a given value ®oft
The molecule is affected by phase-modulated pulses aime t. The complete density matrix averaged over the sto-
carrier frequencyw: chastic process which modulates the system energy levels is
12 . . obtained by integration op; («,t) over « (the generalized
E(t)=3&(t)exd —iwt+ie(t)]+c.c., @ gowvent coordinate ]
where £(t) and ¢(t) are real functions of time, ang(t)
describes the change of the pulse phase in a tim&he <p>ij(t):f pij(a,t)da, (6)

instantaneous pulse frequencyui$t) = w — de/dt.
The influence of the vibrational subsystems of a solutewhere the diagonal quantitiés);;(t) are nothing more nor

and a solvent on the electronic transition can be described dess than the populations of the electronic statgs;;(t)

a modulation of this transition by low-frequenéyF) vibra- =n;, n;+n,=1.

tions{wg}.*"*8In accordance with the Franck—Condon prin-

ciple, an electronic transition takes place at a fixed nuclear

configuration. Therefore, the quantityu(Q)=W,(Q)

—W(Q) —({W,(Q)—W,(Q)), is the disturbance of nuclear

motion under an electronic transition. Herg ),

=Trg(.. .pRn) denotes the trace operation over the reservoir  \We solve the coupled equatiof® and(4), using a basis
variables in the electronic state set expansion with eigenfunctions of the diffusion operator

o 3 B Ly=(Lys+L,)/2.51%35% et us switch to the interaction

pr = X — BW,)/Trrexp(— BW,), B=1KkgT. picture,
The electronic transition relaxation stimulated by LF vibra-  ~ _ ;
a,t)= a,t)expi| wt—o(t)]}, 7

tions is described by the correlation functioK(t) Parlat) ?21( Jexplil e @ _
=(u(0)u(t)) of the corresponding vibrational disturbance and to_equations for the components of the pseudospin
with characteristic attenuation time.?>*®We suppose that Vvector:
fhws<kgT. Thus{w} is an almost classical system and op- Flat) =i[Fog ) —Prah a,t)]
eratorsW, are assumed to be stochastic functions of time in ’ S 1A

. NUMERICAL SOLUTION OF COUPLED
DIFFERENTIAL EQUATIONS

the Heisenberg representation. The quantigan be consid- U(a,t)=pi a,t) +Pr(a,t)
ered as a stochastic Gaussian variable. We consider the __
Gaussian—Markovian process wherK(t)/K(0)=S(t) w(a,t)=paga,t) —pralet). ®

=exp(—|t/z). In this case one can obtain the following The last satisfy the following equations:
equations for the elements of the density matrix by the gen-

At ; S0 D
eralization of the equations of Refs. 22, 45, and 49-53: EW(“’U: _ %S(t)ﬂ(a,t)‘*' LiW(a,t)—6Ls(a,t),

J
Eplz(a-t)_i(wﬂ_ a)pifa,t) P
En(a,t)"‘[fuzl— o) —alto(a,t) =L l(a,t),

- zl_ﬁD12‘€(t)eXm ot=ie(t)][pfa,t) = pri(a,t)]
—v(a,t) —[wy—o(t) = a]l(a,t)

ot
Ligtlo
+ Tplz(a!t)! (3) D
= gg(t)W(a,t)ﬂLle’ﬁ(a,t),
J )
Epjj(avt):(_1)]+1(1/h)|m{D215(t) P
Es(a,t)= LyoS(a,t)— SLw(a,t), 9
xXexg —iot+ie(t)]pia,t)}
o where S(a,t)=p22(a,t)+p11(a,t) and 5LE(L11_ L22)/2
+Ljjpj(at), (4) =(12)7; twgdl da.
where = —ulf; w,q is the frequency of Franck—Condon In the absence of relaxatiot {=0), the length of the
transition 1-2; i,j=1,2; D is the dipole moment operator pseudospin vector
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[T2(a, ) + 5%, t) + W2( o, 1) 12 du B
~ 2 2 __n:_nun+b nUnfl_a(t)Un‘i‘b\/n‘l‘lU n+1
=[4[pa(a,t)|?+ p5ya,t) dt
—2pua,t)pad at) +piya,t)]"? dvy, ) =
—=—nu,— + - +
is conserved: e Nun N Uy +altu, n+1unig

[T%(a,t) +7%(a,t) + W (a,t)]Y?

0 +e(t_)wn,
=s(a,t)=s(a,00=pP(a),
dw, X _
_n = _an+ = \/E Sh-1—e(t)vy,
dt 2

where
p D)= 881(2ma5) M2ex —a?l(20,)] (10

is the equilibrium value of the density matrix of the system d_sn
before light excitation. But in the presence of relaxation dt
(Lj;#0), the pseudospin vector length is not conserved and

S(a t) # const. Therefore, we have added an equation fowhere a(t)—rs(w21 w)— bX0/2+,uTS(t to/7s) and b
s(a,t) to Egs.(9) for the components of the pseudospin —7-501/2. Equationg15) are written for linear chirped pulses
vector. when o(t) = (u/2) (t—tg)?.

It is advantageous to use dimensionless magnitudes: a The system of equationd5) has to be truncated at a

time t_t/q-s, a coordinatec= a/g%g, and a field amplitude finite numbem=N; and then can be integrated numerically

e(t) 7 DE(t)/%. In these terms the Fokker—Planck opera- with initial conditions resulting from expansion of the equi-
tor Ly, takes a standard formy,= 9%/ 9x2+ (X— Xo/2) 9l Ix librium state[Eq. (10)]. This numerical scheme proposed by
+1 andsL = (xo/2)d/ 9x, wherex, is the dimensionless shift Yang and CUk'e? has additional conveniences: the popula-
between potential surfaces,= wst/U =[fwg/(kgT)]. tions of electronic stateg;(t) and n,(t) depend only on

To solve the four-coupled equation), we use a basis set 2€ro-order coefficients,

X
=—nsq+z°%wn,l, (15

expansion with e|ge_nfunct|0ns of the diffusion o_peraIQE nlyz(t)=(27r)l’4(solv_vo)/2= 1117 (2m YAy ()],
(which are proportional to Hermite polynomiald,((x o
—Xo/2)IV2)), sincesy,=(27) ~Y* does not depend on[see Eqs(15)].
L b & (11) The solutions, corresponding to the procedure described
120~ Hn®n: in this section, are termed the total model for short, bearing
with eigenvaluesu,=—n, n=0,1,2,.. .. Here in mind that they take into account all relaxatiofdiffu-
1 siong related to electronic coherence and populations in both
¢n=N—eXF(—y2/2)Hn(y/‘f2) (12)  electronic states.
n

are the right eigenfunctiong,=x—xq/2, N,= V2"n! 2. IV. APPROXIMATE MODELS

The right eigenfunctiongy, form with the left onesgy,, In this section we describe a number of approaches to
the total mode[Egs. (3) and (4)].

- 1
=—H(y/V2), 13
$m N m(y/V2) (3 A. System with frozen nuclear motion

a complete orthogonal and normalized basis set: For pulses much shorter tha one can ignore all the
I 2 pmdndy=6mn. Therefore, we can expand the solutionsterms ~Lj; on the right-hand sides of Eqé3) and (4). It

of Egs.(9) as means that our system can be described as an ensemble of
- independent two-level systems with different transition fre-

PN nci rr ndin re inhomogen ly broad-
X,1) :Z ¢n(y/‘/_) quencies corresponding to a pure inhomogeneously broad

ened electronic transition. In this case Bloch equations can
be integrated independently for eaehAfter this the result
must be averaged ovet. Solutions of undamped Bloch
equations are interesting from the point of view of the evalu-
ation of the greatest possible population of the excited state
due to coherent effects, because these solutions ignore all the

oo

B(X, t)—n2 vn(t) dn(y/V2),

[

Z (D bn(yV2), irreversible relaxations destroying coherence. The approach
. under discussion in this section is termed the “relaxation-
— — free” model for short.
S(X't):ngo Sn(1) dn(y/1v2). (14 An analytic solution of undamped Bloch equations for a

o ) i L chirped pulse of special shape
Substituting them into Eqg9), we obtain the following in-

finite set of coupled differential equations for the expansion
coefficients:

t—to
E(t)=E&ysech ——
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Yy [t t'—t, The last equation is equivalent to EJ8) and (4) if one
e(t)= W—f tanl‘( . )dt' ignores the last term(a,t)(L1,+ L,5)/2 on the right-hand
side of Eq.(3), which describes relaxatiofdiffusion) of
exists>>*°After completion of the pulse action and for initial p,,(«,t). Therefore, the solutions which correspond to Eq.
condition (10), this solution is the following: (19) are termed the “partial relaxation” model for short.

_ _ Calculations for the partial relaxation model can be also
pad @) =[cosi(y/2) — cos(¥12)1p(7. o). (16) carried out by numerical integration of Eq45) where the
where W=\(77D& /1)~ y*, yo=vo(a)=mr(wy—® first terms on the right-hand sides of the first and second
—a@), and p(y,yo)=2/(moys) exd—a’l(203)]/(coshy  equations(* —nu,” and “ —nv,,” respectively must be

+coshy,). The total population of the excited electronic omitted.
state after completion of the pulse action can be obtained by
Eqg. (16) where the magnitude(y,y,) must be substituted

by its integralfp(vy, yo(@))de, i.e.,

TJo

C. Equations for population wave packets

n2(00)=[cosf?(y/2)—cosz(\lf/2)]f p(v,vo(a@))da. Let us consider again the slow-modulation limit and
17) pulses longer than the irreversible dephasing time of the
electronic transitionT’ = (75/a,9) " (i.e., t,>T') with a
One can see from Eqg¢16) and (17) that solutions for moderate phase modulation rate whedw(t)/dt|T’
p2a,*) andny(») are symmetric with respect to the sign < (T')~1.22 |n addition the pulse intensity is limited by the
of the chirp. condition o,(w21)Imax<(T’) ! Where o,(w,y) is the cross
section at the maximum of the absorption band aiit)
is the power density of the exciting radiatiod ., is its
maximum  valug so that 270,50 ,(wyq)I(1)
Let us return to Eqs(3) and (4). Solving Eq.(3) for  =#4"2(x/2)|D1,£(t)|2. Then the variable in Eq. (18) is of
p1a,t) and substituting the corresponding expression intahe order of the relaxation time of the nondiagonal element

B. Semiclassical (Lax) approximation

Eq. (4) for pjj(a,t), we obtain of the density matrix which is about~ T’ <t for the pulses

P under consideration. Therefore, one can disregard them by
—pjj(a,t):(—1)1—1(2ﬁ2)—1|D12|2 changing the inversiom(«,t) and field amplitudeg(t) in

gt Eq. (18) during timex and taking them outside the integral

w % overx,
xRef da’f dx&t) E(t—x)W(a’ , t—X)
— 0

d ) o
_ij(a,t):(—l)Jflgz(t)J da’
X Gy a,t;a’ ,t—X) at e

xXexp(—i{ox—[¢(t) = e(t=x)]}) XI(a,a" OW(a' D) +Ljjpj;(at), (20
+L;pji(at) (18  Where we denoted

if £(t)=0 fort=<0. HereGq5(a,t;a’,t") is the Green'’s func-

tion of Eq. (3),>>*" which is presented beloysee Eq.(22)].
For broad electronic spectra satisfying the “slow-

modulation” limit, we have o,s72>1, where oy xXexp(—i{ox—[e(t)—e(t=x)]}) (21

=K(0)% 2 is the LF vibration contribution to the second and

central moment of an absorption spectrum. In the last case

electronic dephasing is fast, and one can use a semiclassical

(short-time approximatiorﬁ8 This limit is also known as the Gulatia t)=[2mo(t—t')] Yexp] iwy(t—t')

case of appreciable Stokes losses because the perturbation of

the nuclear system under electronic excitatien 2 (a quan-

I(a,a’,t)=(2h2)’l|D12|2Ref dXGya,t; e’ t—X)
0

ogos(1—r
tity W,—W,;) is large. Then the Green’'s function + 22(3(1—H))(7-s+ts)2—025t5(t—t’)
Giya,t;a’,t—x) in Eq. (18 can be approximated as
G a,t;a’ t—x)~exdi(wy— a)x]8(a— a'). Substituting 22+ o' $2 o —tg
this equation into Eq(18), we obtain Eq(10) of Ref. 22: T Zop1=1?) +ia 177
J o 3
ﬁp]’j(aut):(_l)J 1(2ﬁ2) 1|Dl2|2 ia’ iar
) T LCLLS sy
xRef dx&(t)E(t—x)W(a,t—x
0 (D& W(a ) (22

. is the Green'’s function of Eq3). In Eq. (22), r=S(t—t'),
X — t)—o(t—

X il e ()~ e(t=x) t—t'=0, andty= 7o+ g/ (20p) = 7o+ i Bh /2.
+(wy—o—a)x]}+Ljpj(a,t). (19 The Green’s function of E¢20),*
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Gjj(a,t;a’ t)=[2ma(t—t")] 2exp—[(a— §j0s)
—(a' = §jws)S(t—t")?/[20(t—t")]},
(23

Coherent population transfer 7227

(a,t)=(—1) 22K (a,hHW(a,t) +Ljpjj(a,t).
(30)

The first term on the right-hand side of E¢30),

a
ot Pii

gives the conditional probabilities for a stochastic Gaussian-£2(t)K(a,t), describes the radiation transitions between

process. In the last equation(t—t')=0,4(1—r?). Inte-
grating Eq.(20) by Green'’s function(23) for the initial con-
dition, Eq.(10), we obtain

pii(@t)=pf (@) +(~1)) 7

0 t 0
XJ da'J dt’é’z(t')f da”
— 0 —

Xij(a,t;a",t’)l(a",a',t')V_V(a/it,)- (24)

Following the Refs. 51 and 5&ee also Refs. 49 and
50, we will assume that the spatial variation of
Gjj(a,t;a",t") is much smoother than that dfa”,a’,t").
Therefore, one can approximate the integral owef
in Eq. (24 as [Z.da"Gjj(a,t;a",t")I(a",a’,t")
~G“(a,t;a’,t')f°iwda”l(a",a’,t’)
Eij(cu,t;cv’,t’)K(a’,t’), where

K(a',t)= fw dal(a,a’,t)

=(27L2)71|D12|Zf dxco(we— w)X
0

Tle(t) —o(t=x)] =7 1—exp(—X/75)]
X (a' — wgl2)}exd f(x)], (29

f(X) = 0a575[ 3 7 1~ exp( =X/ 75) ][3— exp( —x/79) ] =],

(26)
and Eq.(24) can be written in the form
_ t o
et =pfP(@)+ (-1 [[avexe) | e
XGjj(a,t;a’ ,t")K(a' " )W(a',t"). (27)

The quantityw(«’,t") enables us to calculate the popu-
lations of the electronic stateg(t) when the molecule is
excited with strong chirped pulses. Using E@S3), (10), and
(27), we obtain

. t *
n,—(t)=51j+(—1)1—1f dt’sz(t')f da’
0 — o

XK(a' t")W(a',t"). (28

One can obtain a differential equation for the quantity

pjj(a,t). Differentiating both sides of Eq27) with respect
to t and bearing in mind that the Green’s function
Gjj(a,t;a’,t") satisfies the equations

d
ot

Gjj(a,t;a',t)=6(a—a'),

ij)ij(a,t;a’,t’)=O,
(29)

we have

electronic states.

To evaluate the magnitudk(«,t) [see Eq.(25)], we
will use a short-time approximation which is applicable in
the slow-modulation limit. In doing so, we exparfi¢x) to
the lowest nonvanishing order in(Ref. 53:

f(x)~— 3(x/T")3. (31)

Furthermore, one can take into account only the linear
changes of the field phase during tim&vhich is of the order

of the irreversible dephasing tim&' (Ref. 22, ¢(t—x)
~(t)— (de¢/dt) x, and expand the arguments of cosj

in Eq. (25) to the first order inx. As a result we obtain

K(a,t)=(2h%)7" D12|2f:dX005{[w21_ w(t) — a]x}

xexd — 3(x/T")3]. (32

One can see from Eq32) that the functionK(a,t) has
peaks atr= w,,— w(t), i.e., at instantaneous intersections of
“photonic replications” with the corresponding electronic
states.

In the extreme slow-modulation limit when

\ O'ZST’>1, (33)
the right-hand side of Eq32) can be evaluated as
77 2
K(a,t)~W|D12| Hwy—w(t)—a). (34)

Then Eq.(30) along with Eq.(34) coincides with Eq(11) of
Ref. 22. The last one can be reduced to integral equation
(170 of Ref. 22 for a dimensionless quantiti(t)

=— ‘/2770'25V_V(w21_ o(t),1).

V. RESULTS AND DISCUSSION
We consider linear chirped pulses of the form

E()=&exd — 3(8—iu)(t—to)?].

If chirped pulses are obtained by changing the separation of
pulse compression gratings, the parameteed p are de-
termined by the formul&$??

8°=2{15,+[20" (w)/ 75013} %,

(39

p=—A40"(w)[ 750+ 4P (w)] 7, (36)

where Tpo=1,0/y21In2, t,, is the pulse duration of the
corresponding transform-limited pulse, andb”(w)
=d"(v)/(47?) is the phase term.

First, we illustrate our calculations, with Figs. 2, 3, and 4
presenting the density matrix;(x,t) for “coherent” mod-
els: “relaxation-free,” “partial relaxation,” and total models,
respectively, and the value ob”(v) is equal to®"(v)
=50000 f¢. The values of the parameters were the follow-

Downloaded 07 Oct 2002 to 130.79.54.138. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpol/jcpcr.jsp



7228 J. Chem. Phys., Vol. 117, No. 15, 15 October 2002 B. D. Fainberg and V. A. Gorbunov

P60
P Xt g, P oo{X.1) 22

2N
I'” i
iy
:,'"t/m,',',',m;,.\
i

g
mll”” i ',;;‘,'ll","l”
ol
il
il
{)

i
i,
i ¢
i o ittty
7:,‘5’,',!:.',':,',",","1""1

7

I
il
:,,,%lln,,Ill:,hllllnu,,, i3
s
525'4""7":',”,1"1’:7,7}11 i
1oty

il i

il
HI
i

5 4

FIG. 4. Dynamics of the density matrpgj(x,t_) for the total model accord-

FIG. 2. Dynamics of the density matrix;(x,t) for the relaxation-free ing to Egs.(3) and(4). The parameters are identical to those of Fig. 3.

model according to Eq$3) and (4) without terms describing diffusion.

tion. Figure 5 shows the calculation resultsmfas a func-
ing: Tpo=11fs, Vo s=546 cm}, and Q' =0 4(ws)Imad,  tion of ®”(v) for different detunings of the exciting pulse
=5 (the saturation paramejeilOne can see a gradual decay carrier frequencyw with respect to the frequency of the
of the initial population wave packetﬁll(x,t_) for these Franck—Condon transitio@,;, corresponding to “coherent”
models(with superimposed small oscillations for the partial models(the relaxation-free, partial relaxation, and total mod-
relaxation model Correspondingly, the excited-state popu—e|5)-
lation wave packetp,.(X,t) increase. It is worthy of note :
that in spite of a quite different behavior of the coherencedopPulationn,
(nondiagonal density matrix elemenfer the partial relax-
ation and the total models, their population wave packets 4]
p;j(x,t) behave much alike. Ny 02
Let us study the influence of the chirp rate on the 0.0
excited-state population, after the completion of pulse ac-

One can see a strong dependence of the excited-state
on chirp sign induced by the relaxatidthe

0.8
0.6
0.4
0.2
0.0 T T T T v T T )

0.84
0.6
0.44
0.2

0.0
0.4

0.2

0.0
-40000 -30000 -20000 -10000 O 10000 20000 30000 40000

D), 5

€

- FIG. 5. Excited-state populatiam, after the completion of the pulse action
FIG. 3. Dynamics of the density matrix;(x,t) for the partial relaxation  as a function ofd"(v) for the total(solid lineg, partial relaxation(dashed

model according to Eqg3) and (4) without the diffusion term in Eq(3). lines), and relaxation-fregdotted line$ models. Frequency detuningo(
The correlation time iss="70 fs. Other parameters are identical to those of — w,;)/wg=—1 (a), —0.5(b), 0(c), 0.5(d), and 1(e). Other parameters are
Fig. 2. identical to those of Fig. 3.
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partial relaxation and total models which give very similar 1 (2)
resultg for positive detunings — w,,, whereas, does not

depend on chirp sign for the relaxation-free model. For nega- > < n> <t

tive detuningsw — w,; the asymmetry of tha,(®"(v)) de- T oft) o(t)

pendence with respect to the chirp sign diminishEg. T /'

5@]. T ®(t-1,) f2> o{t-t,)

For moderately large positived”(»)=10000 f§ the =, 2> <2|

excited-state population, reaches about 1 fo@’=5 and T <2|

then slightly diminishes, remaining close to the value given _ \ ? 3/

by the relaxation-free model. ks ®(t-T,-1,T,) o (t-T,-T,-T,)
11> <1] 1> <1|

A. Criterion for ARP in the relaxation-free model

. . . ... FIG. 6. Double-sided Feynman diagrams for resonance four-photon interac-
To understand the behavior shown in Fig. 5, we Will tjon gescribing the intrapulse pump-dump process.

discuss first the relaxation-free model. The last is an en-
semble of noninteracting two-level systems with transition

frequencieswy;—a. We will consider strongly chirped essentially smaller than 1 for negatived”(v)
pulses when the pulse duration is much larger than that of the: — 10000 f¢. It means that suppressing ARP by relaxation
transform limited one. Thefsee Refs. 59 and 0 is essentially reduced for a positive chirp and detunitags
2|¢,,(w)|>750_ (37) —wy1~0, and as the consequence, the ;ystgm behavior ap-
proaches a coherent one. This conclusion is supported by
For these conditions the ARP criterion for a two-level ana|ytica| considerations as wéflee the Append))_(

systent is the following: It is evident from the evaluations made in the Appendix
do(t) that the time which a molecule spends in the excited state
‘T <|Q(1)|?, (38)  (m) between two sequential interactions with lighee Fig.

6), shortens for PC pulse excitation with respect to that for
where Q(t)=2D&(t)/A, and we assumed the resonanceNC pulse excitation when detuning— w,;=0. Moreover,
conditions; i.e., equality,;— o= w(t) is realized for anyr  the timer, is essentially smaller than the correlation time

at a definite instant of time. for PC pulse excitation. It has two consequences. First, the
For linear chirped pulses determined by E(35) and  four-photon contribution to the excited-state population
(36), we obtain, from Eq(38), n(24)(00) [see Eq.(A3)], which is responsible for the pump-
dump processsee Fig. 8, is smaller for PC pulse excitation
Q'> \ /lmz_ (39)  Wwith respect to that for NC pulse excitation. Secotitk
47p0 V 025 relaxation effects on a coherent behavior of the system will

If 750=11fs and\/o,=546 cni’ !, it corresponds to the be smaller for PC pulse excitatiokvhen the pulse intensity
value of Q'>1/2 which conforms to the value @@’=5  increases, the light-induced transitions can overcome the re-

used in our calculations. Thus, the complete populatiot@xation effects, and the system behavior will be close to that
transfer to the excited electronic state observed in our simuef @ system without relaxation. Since the relaxation effects

lations for the relaxation-free model when detunmg_ wo1 for PC excitation are Sma”er, it is easier for Iight-induced
=0 can be explained by ARP. transitions to overcome them than those for NC excitation.

According to Eq(gg), the ARP criterion for the excita- Thus, the system behavior for PC excitation with mOderately
tion of the relaxation-free model with strongly chirped pulsesstrong pulses is closer to that of a system without relaxation
is determined by the saturation parameéronly (which is  than the behavior for NC excitation.
proportional to the pulse energgnd does not depend onthe ~ Due to relaxation processgthe spike diffusion along
phase termb”(w). The point is that both the chirp rate and the excited state potentidbee Fig. 1], the time which a
the pulse intensity decrease a$d/(w)| in the conditions molecule spends in the excited state between two sequential
under Consideratiofsee Eqs(35), (36), and (37)]’ and the interactions with I|ght for PC pulse excitation and detuning

fulfillment of inequality (38) is not affected byd”(w). w— w»1=0 shortens with respect to that for a system without
relaxation. Therefore, the dump process for the total model is

B. ARP-like behavior in partial relaxation less effective than that for the relaxation-free model. Corre-

and total models spondingly, the curve of Fig.(6) which corresponds to the

o ) total model is slightly higher than that associated with the
The same criterion may be used also for the partial re;

) - '~ Pe relaxation-free model for large positive”(v)>0.

laxation and the total models if the pulse duration is much

smaller than the relaxation times. According to Fig. 5, these , , )

models give the value af,=1 for moderately large positive C- Incoherent regime described by equations
®"(v)=10000 f¢ when the pulse chirp can be cons;ideredfOIr population wave packets

as strondsee Eq(37)]. However, under these conditions the Generally speaking, a strong dependence-pbn chirp
pulse duratiort,=56 fs is of the same order as the correla-sign for positive detuning® — w,; can be explained also by

tion time 7,=70 fs. At the same time the value of, is  the pump-dump process for population wave packets, not
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FIG. 7. Excited-state populatiam, after the completion of the pulse action
as a function of®”(v) for “coherent” and “incoherent” models: the
relaxation-free(1), partial relaxation(2), total (3), EPWP (4), and point-
transition models of Ref. 225). Frequency detuning— w,1)/ ws;=0. The
saturation parametdd’ =2 (a) and 5(b). The values ofn, given by the
point-transition model differ about by 10% from those of the EPWP model
of Eq. (25) (the first are smallgr At the same time the behavior described
by both incoherent models is similar.

taking in consideration electronic cohererigef. 22. How-

B. D. Fainberg and V. A. Gorbunov

electronic state 2 and molecules collect in the excited
electronic state. If the saturation parame@e>1, the popu-
lation of state 2 will be close to 1 after completion of the
pulse action.

VI. CONCLUSION

In this work we have studied electronic coherence ef-
fects on population transfer with intense ultrashort chirped
pulses in molecules coupled with a dissipative environment.
We considered a two-state electronic system with relaxation
treated as a diffusion on electronic potential energy surfaces.
This relaxation model has enabled us to trace continuously
the transition from a coherent population transfer to incoher-
ent one. We believe that such a simple model properly de-
scribes the main relaxation processes related to overdamped
motions occurring in large molecules in solutions. Therefore,
this model can be considered as a basic one for the study of
the dissipative environment influence on a coherent excita-
tion of a molecule by a chirped pulse.

A number of approaches were invoked to model a purely
coherent(the relaxation-free modglbr incoherentEPWP
transfer. A comparison between the total model behavior and
those of the approaches to it has shown that the type of
population transfefcoherent or incoherenstrongly depends
on the pulse chirp, its sign, and the detunings of the exciting

ever, such an incoherent process fails to_explain the valye Qulse carrier frequencw with respect to the frequency of
n,=1 for ®”(»)=10000 f$. To show this, we present in Franck—Condon transitiom,;. For positive chirped pulses

Fig. 7 dependencien,(®"(v)) calculated by the balance
equation(30) and for the point-transition model of Ref. 22 as
well. One can see that the value of calculated by the
“incoherent” models for ®”(»)=10000 f¢ is essentially
smaller than 1 foQ’ =5.

and moderate detunings, relaxation does not hinder a coher-
ent population transfer due to ARP. Moreover, under these
conditions the relaxation favors more efficient population
transfer with respect to the coherent with frozen nuclear mo-
tion (the relaxation-free modglThis conclusion is supported

It stands to reason that an incoherent model correspongby analytical considerations as wéhppendix.

ing to equations for population wave pack€EPWB is in-
correct for Q' =0 ,(w,1)Imat,=5 and ®”(»)=10000 f$
when the probability of the light-induced transitions

Figure 7 makes it clear that the region where a coherent
population transfer takes place is asymmetric with respect to
the chirp sign. By these means the usual criteria for a coher-

0a(w21)Imax IS Of the same order as the reciprocal irrevers-ent excitation of molecules must be revised for chirped pulse

ible dephasing time of the electronic transitidn 1. This
model becomes correct for largé”’(v) when the pulse du-

excitation.
Using a number of models allowed an understanding of

ration t,, increases and, correspondingly, its intensity de-the role of different relaxation processes in population trans-

creases. Therefore, curve 4 of Figb)y nears curve 3 for
large positive®”(v). The smaller the saturation parameter

fer. First, the problem was solved by the full systems of the
diffusional Markovian equation&3) and (4) for the density

(Q'=2), the smaller the region where EPWP’s and the totamatrix of the electronic systeiithe total model Second, we

models give different results for positivé@”(v)>0 [Fig.

7@].

For NC excitatio] ®"(v)<0] the corresponding region

is essentially smallefthe incoherent models agree satisfac-

torily with the total model for®”(v)<— 15000 f€). The

used a semiclassical short tinfjeax) approximation[Eq.
(19)] (the partial relaxation model Good agreement be-
tween calculation results for the partial relaxation and the
total models in the slow-modulation limit shows that a spe-
cific form of the relaxation term in Eq3) for nondiagonal

last point is also explained by the fact that a positive chirp iselements of the density matrix is not important. By these

favorable for ARP.
When ®”(»)>10000 f¢, the magnitude ofn, is

means the limits imposed on the last equatiéAare of no
practical importance for the problem under consideration in

slightly less and approaches that of the relaxation-fre¢he slow-modulation limit. In addition, we checked the von
model. Certainly, there are no coherent effects for very larg&deuman condition during our calculations according to the
®"(v) when the pulse duration is essentially larger than theotal model and did not find any violations of it.

relaxation timers. However, a “three-level scheme of laser
pumping” is realized for these conditions. Really, for
positive detuningse — w,q a pulse excites a Franck—Condon

In our paper we are concerned mainly with the slow-
modulation limit. However, the approach to the problem de-
veloped in this paper is also applicable to cases of interme-

state that relaxes very fast to lower vibrational levels ofdiate or fast modulation wheszrgs 1.
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where y®)(w(t),t,7,) is the cubic susceptibility. It can be

APPENDIX: CHIRP INFLUENCE ON RELAXATION represented as a sum of two terms:

EFFECTS
Let us consider the chirp influence on relaxation effects. 3) 2 3)
We shall integrate Eq(19) using its Green’s function X (“’(t)'t*TZ):JZl X (o(1),1,72), (A4)
Gjj(a,t;a’,t") [Eq. (23)] for initial condition (10). As a re-
sult we obtain, forj =2, where the indeX shows that the corresponding quantities

are related to nonequilibrium processes in absorption
(j=1) or emission [=2).

The contributionsy{*(w(t),t,7,) to the cubic suscepti-
bility (A4) can be written in the form

t © ’
pzz(a,t):—(2ﬁ2)*1|012|2f0dt'f_ da'f; dx

XReE*(t")E(t' —x)exd —i(wy—
—a )XPW(a' ' =x)Gola,t;a’ t'). (A1) xP(w(t).t,7)

Integrating the last equation with respectd@nd using Eq. = —iD4(2773)1’2Nﬁ’3(o’(72))’1’2F‘f(w(t))w(z]-).
(21) of Ref. 22 and Eq(6), we have

(A5)
nz(oo):(Nﬁ)*lfxdtIm{E*(t)P+(t)}, (AZ) Here Fi((y)(t)):(ZWUZS __l/zexp[—[w(t)—w2ﬂ2/(20'23)} is
0 the equilibrium absorption spectrum of the system under

i.e., the excited-state population after the completion of th&onsideration at the frequenay(t),

pulse action is expressed in terms of the positive-frequency
component of the polarizatioR™ (t). HereN is the density
of particles in the system.

The lowest-order polarization that describes the pump-
dump process is a cubic or®®)*(t). The corresponding is the error function of the complex arguméhand o’ (7,)
two-sided Feynman diagrams are shown in Fig. 6. The quaris the time-dependent central second moment of the changes
tity P®*(t) has been calculated in Refs. 22 and 63 forrelated to nonequilibrium processes in the absorptiwie)
Gaussian pulses with the linear chigee Eq(35)] and small  and the emissiofispike) spectrasee Eq(B16) of Ref. 22.
changing the complex field amplitud&(t) in a time  For strongly chirped pulses one can ignore terms’ in the
~ 054", Substituting the corresponding value 1f*)*(t)  equation forz;,% and the quantity’ can be approximately
into Eq. (A2), we obtain written as

w(z)=exp— 7%

1+(2i/\/;)fzexp(t2)dt}
0

. 1 2
[0—u(t—tg) — a1t djpwe]SINN( 72/27¢) — S M2 expl— 7'2/27'3)]

2__
4T oo SIN(75179) + (] 029)°]

SIN( 7/ 7g) — i ——|. (A6)
O2s

One can see from EqA6) that the real part Ré is positive, i.e., Rejz>0, and determines an exponential attenuation of the
functionw(z;) due to relaxation processes.
Let us evaluate the ratio of Rﬁfor PC (©<0) and NC @>0) when detuning® — w,;=0. Using Eq.(A6), we obtain

Rezl-z(,u<0) AL(t—to) + Sjpws/| | ISINN( 72/276) + (7,/2) exp( — m,1275)}?

= - . A7
Rezlz(,u,>0) {[(t_to)_5]'2(1)St/|ﬂ|]$|nr(7'2/27'3)+(72/2)exq_7'2/27'3)}2 ( )
One can see immediately from the last equation that the , [ 7 2[512wst_ w(t—to+79)1? w
value of the ratio R&(u<0)/Rez(«>0) is equal to 1; i.e., Z 27, |2 7ol Ts e
ReZ does not depend on the chirp sign. Oosl (721 75)*+ g)
If <275, then ° (A8)
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and

Rezjz(/*l“<0) . |M|(t_t0+ )+ 5j2wst 2
RerZ(M>0) |l (t—to+ 75) — Sjwst

(A9)

Bearing in mind that the pulse duratidg=2In2/5 and
using Egs.(36), we obtain the following evaluation for

strongly chirped pulsegju|~22 In 2/(ryt,). Then,

Rez3(1<0) [2(t—to+ 7 y21n 2/ rpty) + wsy]”
Rezy(1>0) | 2(t—to+ ) V2 IN 2/( ot ) — s
(A10)

for j=2.
In the maximum of the pulset £t,) and for pulse duration
t,~ 75 we have
Rezs(u<0) _12V21In 2750+ ws 2
Rezy(1>0) | 2\2In2/7p— g
For wg;=1420 cm * and To0=11 fs we obtain that the ratio

Rez(u<0)/Rez(u>0)=81. We emphasize again that th
last evaluation is correct only far,<27. It can not be the
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