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Coherent population transfer in molecules coupled with a dissipative
environment by intense ultrashort chirped pulse. II. A simple model
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We have developed a simple and physically clear picture of adiabatic rapid passage~ARP! in
molecules in solution by careful examination of all the conditions needed for ARP. The relaxation
effects were considered in the framework of the Landau–Zener model for random crossing of levels.
The model enables us to include into consideration non-Markovian Gaussian-correlated noise. It
explains all the numerical results obtained in the first paper of the series@B. D. Fainberg and V. A.
Gorbunov, J. Chem. Phys.117, 7222~2002!#, in particular, that for positive chirp pulse excitation
relaxation favors more efficient population transfer with respect to the relaxation-free system with
frozen nuclear motion. We also relate parameters of non-Markovian Gaussian-correlated noise with
irreversible dephasing time of an optical transition by calculating the photon echo signal attenuation.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1804960#
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I. INTRODUCTION

Chirped pulses are very efficient for achieving popu
tion transfer in atomic and molecular systems.1,2 Total elec-
tronic population inversion can be achieved using cohe
light-matter interactions such as adiabatic rapid pass
~ARP!.3–6

Although the overwhelming majority of chemical rea
tions are carried out in liquid solution, there are very fe
theoretical studies of nonperturbative active control of
quantum dynamics related to population transfer and prod
selection for a reactant molecule embedded in a solv
These are the pictures of ‘‘moving’’ potentials of one of
for incoherent description of the chirped pulse interact
with molecules in solution,7–12 and theoretical studies of op
tical control of molecular dynamics in a liquid by ARP~Refs.
13 and 14! and stimulated Raman adiabatic passage.15

In the first paper of the series13 we have studied an in
tense chirped pulse excitation of a molecule coupled wit
dissipative environment taking into account electronic coh
ence effects. We considered a two-state electronic sys
with relaxation treated as a diffusion on electronic poten
energy surfaces with respect to the coordinatea. We solved
numerically equations for the density matrix of the molecu
system under the action of chirped pulses of carrier
quencyv:

E~ t !5 1
2 EW ~ t !exp~2 ivt !1c.c., ~1!

when the interaction with a dissipative environment could
described as the Gaussian–Markovian modulation with
correlation function of energetic fluctuations,

k~ t !5^a~0!a~ t !&5s2s exp~2utu/ts!, ~2!
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wherea(t)5exp@(i/\)W1t#a exp@(2i/\)W1t#, W1 is the adia-
batic Hamiltonian of reservoir~the vibrational subsystems o
a molecule and a solvent interacting with the two-level el
tron system under consideration! in state 1~Ref. 13!, As2s is
the amplitude of modulation, andts the correlation time~the
total model!. An inhomogeneously-broadened system w
frozen nuclear motion (ts→`) was invoked to model the
corresponding population transfer without relaxation. In E
~1! a complex field amplitudeE(t) can be written asE(t)
5E(t)exp@iw(t)# whereE(t) and w(t) are real functions of
time, andw(t) describes the change of the pulse phase i
time t. In the frequency domain, the electric field can
written as E( ñ)5uE( ñ)uexp@iF(ñ)#, where the phase term
F( ñ) can be expanded in a Taylor series:

F~ñ!5F~n!1F8~n!~ ñ2n!1~1/2!F9~n!~ ñ2n!21... .
~3!

We have shown that the type of population transfer~co-
herent by ARP or incoherent! strongly depends on the puls
chirp, its sign, and the detuning of the exciting pulse carr
frequency with respect to the frequency of Franck–Cond
transition. For positively chirped~PC! pulses and small de
tunings, relaxation does not hinder a coherent popula
transfer. Moreover, under these conditions the relaxation
vors more efficient population transfer with respect to t
system with frozen nuclear motion~without relaxation!.
These conclusions are illustrated in Fig. 1~see Appendix A!,
which reproduces Fig. 5 of Ref. 13.

In the present work we offer a simple and physica
clear explanation of all the numerical results of Ref. 13 w
careful examination of all the conditions needed for ARP
using time-dependent adiabatic potentials. One of these
quirements, the adiabatic criterion
8 © 2004 American Institute of Physics
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udv~ t !/dtu!uV~ t !u2 ~4!

was fulfilled for the excitation under consideration.13 Here
v(t)5v2dw/dt is the instantaneous pulse frequenc
V(t)5DE(t)/\ is the Rabi frequency, andD is the dipole
moment operator.

Some of the preliminary results are presented in Con
ence Proceedings.16 Here we give a full account of this stud
with different results.

The outline of the paper is as follows: In Sec. II w
consider the vibrationally nonequilibrium populations’ b
havior for PC and negatively chirped~NC! excitations. In
Sec. III we consider ARP between randomly fluctuating le
els. In Sec. IV we summarize our results. In the Appendi
we show numerical results obtained in Ref. 13 and evalu
the irreversible dephasing time of an optical transition whe
in addition to a Gaussian-non-Markovian random modu
tion, a large inhomogeneous broadening exists, by calcu
ing the photon echo signal attenuation.

II. TIME EVOLUTION OF VIBRATIONALLY
NONEQUILIBRIUM POPULATIONS

A. Zero detuning of exciting pulse carrier
frequency with respect to the frequency
of Franck–Condon transition

To realize the ARP, one needs to add one more condi
to the adiabatic criterion Eq.~4!: a transition must start and

FIG. 1. Excited state populationn2 after the completion of the pulse actio
as a function ofF9~n! for the total~solid lines!, partial relaxation~dashed
lines, see Ref. 13!, and relaxation-free~dotted lines! models. Frequency
detuning (v2v21)/vst521 ~a!, 20.5 ~b!, 0 ~c!, 0.5 ~d!, and 1~e!. Other
parameters aretp0511 fs, s2s

1/25546 cm21, ts570 fs, andQ855 ~the satu-
ration parameter!, D1251D. For moderately large positiveF9(n)5104 fs2

populationn2 reaches about one and then slightly diminishes remain
close to the value given by the relaxation-free model. The figure shows
suppressing ARP by relaxation is essentially reduced for PC and detun
v2v21'0, and as a consequence, the system behavior approaches
herent one.
Downloaded 07 Nov 2004 to 132.66.16.12. Redistribution subject to AIP
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come to the end far from resonance. Below, this condition is
referred to as ‘‘the second condition to the adiabatic cr
rion.’’ To clarify to what extent the last condition is fulfilled
for the model with relaxation, we will consider the vibra
tionally nonequilibrium populations’ behavior for PC an
NC excitations when detuningv2v2150. Herev21 is the
frequency of Franck–Condon transition. Such a detun
corresponds to the case shown in Fig. 1~c!.

Figure 2 presents the time evolution of vibrationa
nonequilibrium populationsr i i (a,t) calculated by solving
coupled differential equations of Sec. III of Ref. 13~the total
model!. In addition, Fig. 2 shows the effective diabatic p
tentials related to the excited electronic state 2 and the ‘‘p
tonic replication’’ ~moving potential! of the ground state 17

~Fig. 3!,

U j~a!5Ej1d j 1\v~ t !1\~a2d j 2vst!
2/~2vst!,

j 51,2, ~5!

and the corresponding time-dependent adiabatic potentia

U6~a,t !5 1
2 $U1~a!1U2~a!

6A@U1~a!2U2~a!#21\2V2~ t !%. ~6!

Herevst is the Stokes shift of the equilibrium absorption a
luminescence spectra,d j i is the Kronecker delta. We con
sider linear chirped pulses of the form

g
at
gs
co-

FIG. 2. Vibrationally nonequilibrium populations of the ground~solid line!
and excited~dashed line! states in the beginning~a!, in the middle~b!, and
at the end~c! of exciting pulse for positive~left column,F9(n)5104 fs2)
and negative~right column,F9(n)52104 fs2) chirp. Other parameters ar
identical to those of Fig. 1,x5a/s2s

1/2 . Solid lines 2 and 18 are effective
diabatic potentials related to excited state 2 and photonic replication 18 of
the ground state. The corresponding time-dependent adiabatic potentia
shown by dotted lines. Inset: electric field amplitudeE(t), the arrows show
the instants of time corresponding to Figs. a, b, and c.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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E~ t !5E0 exp@2 1
2~d22 im!~ t2t0!2#, ~7!

where the parametersd andm are determined by the follow
ing formulas:17,7

d252$tp0
2 1@2F9~v!/tp0#2%21,

~8!
m524F9~v!@tp0

4 14F92~v!#21,

where tp05tp0 /A2 ln 2, tp0 is the pulse duration o
the corresponding transform-limited pulse andF9(v)
5F9(n)/(4p2).

The left column of Fig. 2 shows the time evolution
vibrationally nonequilibrium populations for the model wi
relaxation~the total model! when F9~n!5110 000 fs2 ~PC
excitation!. In an early stage of the exciting pulse all th
population is found in the ground state@Fig. 2~a! PC#, and
the vibrationally nonequilibrium population is situated f
from the crossing point. In the middle of the pulse@Fig. 2~b!
PC# the population of the excited diabatic state occurs, a
the vibrationally nonequilibrium populations are localiz
near the avoided crossing. In the end of the pulse@Fig. 2~c!
PC# all the population has been transferred to the exc
diabatic state, and the corresponding vibrationally noneq
librium population is localized far from the avoided crossin
By this means the complete population transfer by ARP
realized in the case under consideration due to the fulfillm
of the second condition to the adiabatic criterion. The l
condition enables us to use the Landau-Zener~LZ!
model18,19 to describe the population transfer for PC exci
tion and small detuning of the exciting pulse carrier fr

FIG. 3. Effective potentials corresponding to electronic states 1 and 2
their photonic replications 18 and 28, respectively. In accordance with th
Franck–Condon principle, an optical electronic transition takes place
fixed nuclear configuration. Therefore, the highest probability of transitio
near the intersectiona0 of photonic replication and the corresponding ter
and rapidly decreases asua2a0u increases. The absorption maximum co
responds to the pulse frequencyv, which is equal to the frequency o
Franck–Condon transitionv21 whena050.
Downloaded 07 Nov 2004 to 132.66.16.12. Redistribution subject to AIP
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quency with respect to the frequency of Franck–Cond
transition.

For NC excitation whenF9~n!5210 000 fs2 ~the right
column of Fig. 2!, the vibrationally nonequilibrium popula
tions’ localizations for an early and middle stages of the
citing pulse@Figs. 2~a! and 2~b! NC# are similar to those of
PC excitation. But in contrast to the PC pulse excitation,
vibrationally nonequilibrium populations of the diabat
states remain near the avoided crossing in the end of
pulse as well@Fig. 2~c! NC#. In other words, the vibrationally
nonequilibrium populations follow the crossing point due
relaxation. By this means the second condition to the ad
batic criterion fails for NC pulse excitation, and therefor
the complete population transfer does not occur in this ca

Furthermore, Fig. 1~c! shows that for PC pulses an
small detunings relaxation favors more efficient populat
transfer with respect to the system with frozen nuclear m
tion ~without relaxation!. To clarify this issue we will con-
sider the time evolution of vibrationally nonequilibrium
populations for the last model whenF9~n!5110 000 fs2

~Fig. 4!, and compare its behavior with that of the tot
model~the left column of Fig. 2!. The vibrationally nonequi-
librium populations’ localizations for an early and the midd
stages of the exciting pulse@Figs. 4~a! and 4~b!# are similar
to those of the total model with the only difference that
hole occurs in the vibrationally nonequilibrium population
the ground state@Fig. 4~b!# due to the absence of relaxatio
In the end of the pulse@Fig. 4~c!# the vibrationally nonequi-
librium population of the excited diabatic state is localiz
closer to the avoided crossing than for the total model w
relaxation@Fig. 2~c! PC#. Therefore, a small part of this vi
brationally nonequilibrium population~and that of the
ground state! are still found near the crossing point@see Fig.
4~c!#, and the population transfer is slightly less than for t
model with relaxation. By this means the relaxation im
proves passing through the avoided crossing region an
doing so it favors more efficient population transfer.

nd

a
s

FIG. 4. The same as in Fig. 2 for relaxation-free model. The result
population transfer does not depend on the sign of chirp for this case.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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B. Nonzero detuning of exciting pulse carrier
frequency with respect to the frequency
of Franck–Condon transition

Let us consider the fulfillment of the second condition
the adiabatic criterion for different detunings of the pu
carrier frequencyv with respect to the frequency of Franck
Condon transitionv21. Bearing in mind that electronic tran
sition is most efficient atv21 ~see Fig. 3!, we shall consider
the fulfillment of the second condition to the adiabatic cri
rion for crossing atv21. Figure 5 presents crossings
‘‘photonic replication’’ 18 of state 1 with state 2 for PC ex
citation at the frequency of Franck–Condon transition
different detuningsv2v21. Such a crossing occurs in th
middle of the pulse forv5v21 @Fig. 5~a!#, in an early stage
of the exciting pulse forv.v21 @Fig. 5~b!#, and in the end of
the pulse forv,v21 @Fig. 5~c!#. The point is that the excit-
ing pulse spectrum is limited and of the same order as
absorption spectrum bandwidth in our simulations. The
fore, the transition under discussion starts and comes to
end far from resonance forv5v21 @Fig. 5~a!#, starts near
resonance and comes to the end far from resonance fov
.v21 @Fig. 5~b!#, and starts far from resonance and comes
the end near resonance forv,v21 @Fig. 5~c!#. That is to say,
the second condition to the adiabatic criterion is fulfilled f
v5v21, and fails forv.v21 andv,v21. This conclusion
is illustrated quantitatively by Fig. 6, which shows the vibr
tionally nonequilibrium populations’ behavior for nonze
detuningsv2v21. It explains the dependence ofn2 on de-
tuning v2v21 for PC excitation observed in Fig. 1.

By this means ARP is realized for PC pulse excitati
when the detuning of the pulse carrier frequency with resp
to the frequency of Franck–Condon transition is close
zero.

III. ADIABATIC RAPID PASSAGE
BETWEEN RANDOMLY FLUCTUATING LEVELS

The vibrationally nonequilibrium populations’ analys
of Sec. II has made clear the following issues:

FIG. 5. Crossings of photonic replication of the ground state with the
cited state at the frequency of Franck–Condon transitionv21 for PC excita-
tion and different detunings of the pulse carrier frequencyv with respect to
v21 . Inset: equilibrium spectra of the absorption~A! and the emission~E!;
the arrows show the relative positions of frequencyv.
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~1! Why ARP is realized only for PC excitation whe
detuningv2v21 is close to zero.

~2! Why the relaxation favors more efficient populatio
transfer with respect to the system with frozen nuclear m
tion for such conditions.

Concerning the last issue, it is quite clear that it ho
within the limits. To evaluate the range of parameters wh
relaxation favors population transfer, we shall generalize
LZ model to the crossing of moving potentials for a line
PC excitation (d2w/dt25m5const,0). The point is that the
LZ model describes also ARP in a two-level system exci
with constant-intensity radiation, the frequency of which
linearly swept through the resonance.20–22 Using Zener’s
approach,19 we obtain the following expression for probabi
ity W12 of transition 1→2 during a single passage throug
the crossing point of moving potentials

W12512expH 22p~V/2!2Y U1\ d

dt
~Ũ22Ũ1!1mUJ , ~9!

where Ũ22Ũ1 is the energy difference between two ele
tronic states. Equation~9! gives results of Refs. 19 and 21 fo
the special cases of the chirp absence and a two-level a
excited with a linear chirped pulse, respectively. For t
moving diabatic potentials defined by Eq.~5!,

U1\ d

dt
~Ũ22Ũ1!1mU5U1\ d

dt
~U22U1!U5Uda

dt
2mU.

~10!

Similar to Refs. 7 and 13, we considera as a stochastic
Gaussian variable. Consequently, we must average Eq~9!
over random crossing of levels described by Gaussian

-

FIG. 6. Vibrationally nonequilibrium populations of the ground~solid line!
and excited~dashed line! states for positive chirp@F9(n)5104 fs2# and
frequency detuning of the carrier frequencyv with respect to the frequency
of Franck–Condon transitionv21 , which is equal to (v2v21)/vst520.5
~left column! and 10.5 ~right column!. Other parameters are identical t
those of Fig. 1,x5a/s2s

1/2 . Solid lines 2 and 18 are effective diabatic po-
tentials related to excited state 2 and photonic replication 18 of the ground
state. The corresponding time-dependent adiabatic potentials are show
dotted lines. Vibrationally nonequilibrium populations are shown at the
stants of time corresponding to arrows in the inset to Fig. 2: in the beginn
~a!, in the middle~b!, and at the end~c! of exciting pulse.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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dom noise induced by intramolecular and intermolecu
fluctuations. Such a procedure includes averaging with
spect toa and its time derivativeda/dt[ȧ @see Eq.~10!#. It
can be easily done for adifferentiable ~non-Markovian!
Gaussian process~see Refs. 23 and 24!, bearing in mind an
independence ofa and ȧ from each other for such
processes.25 Therefore, we will consider here a differentiab
~non-Markovian! Gaussian noise, as opposed to Refs. 7
13. In addition, we consider a slow modulation limit whe
s2sts

2@1. Averaging Eq.~9!, we obtain the following ex-
pression for the population of excited electronic state 2,

n25E
2`

`

daE
2`

`

dṽF12expS 2
pV2

2uṽu D G f ~a,ṽ1m!,

~11!

where ṽ5ȧ2m, ~m,0!, f (a,ȧ) is the joint probability
density fora and its derivativeȧ:25

f ~a,ṽ1m!5
1

2pAs2s@2 k̈~0!#
expF2

a2

2s2s
1

~ṽ1m!2

2k̈~0!
G ,
~12!

wherek̈(0) is the second derivative of the correlation fun
tion k(t) of the energetic fluctuations evaluated at zero.
tegrating Eq.~11! with respect toa and entering a dimen
sionless variablet5ṽ/(2m), we have

n2512A j

2p (
1,2

E
0

`

dt expF2
¸

t
2

j~t61!2

2 G , ~13!

where

¸5
pV2

2~2m!
.0, j52

m2

k̈~0!
.0 ~14!

are dimensionless parameters.
When adiabatic criterion Eq.~4! is satisfied, parameteŗ

is much larger than 1 sinceudv(t)/dtu5umu for a linear
chirped pulse. Then the integrals on the right-hand side
Eq. ~13! can be evaluated by the method of steepest desc
which in the case under consideration becomes the me
of Laplace. Maxima of the integrands occur att'(¸/j)1/3

when parameterj5m2/@2 k̈(0)#&1. In particular, for a
Gaussian random process with the Gaussian correlation f
tion ~see Appendix B! parameterj is equal to,

j5m2ts
2/k~0!. ~15!

Therefore, inequalityj&1 implies that the frequency chang
mts of a chirped pulse in the correlation timets is of the
same order or smaller than the bandwidth of the equilibri
absorption spectrum;As2s5Ak(0).

The method of Laplace yields foŗ@1 andj&1

n2512
2

A3
expH 2

3

2
@pV2/~2A2 k̈~0!!#2/3J . ~16!

One can see thatn2 is close to 1 for strong interaction whe

V4/3@@2 k̈~0!#1/3. ~17!

It is worthy to note that Eq.~16! corresponds to a singl
passage through the crossing point of moving potentials
Downloaded 07 Nov 2004 to 132.66.16.12. Redistribution subject to AIP
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results from our simulations of the time evolution of vibr
tionally nonequilibrium populations~see the left column of
Fig. 2!. The PC pulse favors a single passage.

The second derivative of the correlation functionk̈(0)
may be related directly to the irreversible dephasing timeT8
of an optical transition exposed to non-Markovian Gaussi
correlated noise. To do this, we will consider a photon ec
in the two corresponding models. We will discuss first a tw
level system with a Gaussian random modulation of an
tical transition in the slow modulation limit. According t
Eqs. ~6!–~8! of Ref. 26, a photon echo appears in such
system when

12k2~t!/s2s
2 !~24 ln 2!/~ tp

2s2s!. ~18!

Here tp is the excited pulse duration andt;tp!ts . The
left-hand side of Eq.~18! can be expanded to lowest nonv
nishing order. For a differentiable Gaussian process
2k2(t)/s2s

2 '2@ k̈(0)/s2s#t
2. Using the last equation re

sults intp
4!(24 ln 2)/@2k̈(0)#. It is common knowledge that a

photon echo appears when the pulse duration is m
smaller than irreversible dephasing time, i.e.,tp!T8. This
means in order of magnitude, 1/@2 k̈(0)#1/4 is equal to
T8—irreversible dephasing time,

1/@2 k̈~0!#1/4;T8. ~19!

In Appendix B we show that evaluation of Eq.~19! is also
held for another model where, in addition to a Gaussian r
dom modulation of an optical transition, a large inhomog
neous broadening exists.

According to Eqs.~17! and~19!, relaxation does not de
stroy ARP for strong interaction when the Rabi frequen
exceeds the reciprocal irreversible dephasing time,

uVu.1/T8. ~20!

The last condition was fulfilled in simulations of Ref. 1
though in the last caseT85(ts /s2s)

1/3 is determined inde-
pendently ofk̈(0),26 which does not exist for the Gaussian
Markovian process. IfuVu&1/T8, ARP is destroyed by re-
laxation ~see Fig. 7~a! of Ref. 13!.

For an inhomogeneously-broadened system with fro
nuclear motion (ts→`) parameterj tends to infinity @see
Eq. ~15!#. Then the integrals on the right-hand side of E
~13! can be evaluated by the method of Laplace for any va
of ¸. Maxima of the integrands occur att571, and only the
integral with t21 in the exponent will give a contribution
The method of Laplace yields for j→`: n2

512exp@2pV2/(2umu)#. The last result coincides with Eq
~9! for the special case of a two-level atom excited with
linear chirped pulse as it must.

IV. CONCLUSION

We have developed a simple and physically clear pict
of ARP in molecules in solution by careful examination of a
the conditions needed for ARP. The relaxation effects w
considered in the framework of the LZ model for rando
crossing of levels. The model enables us to include into c
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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sideration non-Markovian Gaussian-correlated noise. It
plains all the numerical results obtained in Ref. 13. T
model can be generalized to a three-state electronic sys
bearing in mind generalization of the LZ calculation putti
in a third level.27,28 It will be done elsewhere.
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APPENDIX A: RESULTS OF NUMERICAL SOLUTIONS
OF EQUATIONS FOR THE DENSITY MATRIX
OF THE MOLECULAR SYSTEM
UNDER THE ACTION OF CHIRPED PULSES

Figure 1 illustrates numerical results obtained in Ref.
Figure 1~c! shows ARP for the total model under PC excit
tion and for the relaxation-free model under both PC and
excitation. ARP is realized for the conditions defined by E
~4!. For linear chirped pulses determined by Eqs.~7! and~8!,
it gives13

Q8.
1

tp0
A p

s2s
ln 2'2 ~A1!

for tp0511 fs andAs2s5546 cm21,13 which conforms to
the value of Q855 used in our calculations. HereQ8
[sa(v21)Jmaxtp is the saturation parameter,sa(v21) is the
cross section at the maximum of the absorption band,J(t) is
the power density of the exciting radiation in photons/~cm2 s!
(Jmax is its maximum value!, so thatA2ps2ssa(v21)J(t)
5\22(p/2)uD12E(t)u2.

According to Eq.~A1!, the ARP criterion is determined
by the saturation parameterQ8 only ~which is proportional to
the pulse energy! and does not depend on the phase te
F9~v!. The point is that both the chirp rate and the pu
intensity decrease as 1/uF9~v!u for strongly chirped pulses
@see Eqs.~7! and~8!#, and the fulfillment of inequality~4! is
not affected by F9~v! ~Ref. 13!. In Fig. 1 Jmax52.9
31011W/cm2 and E051.33105 V/cm for F9(n)5104 fs2

when pulse duration of the stretched pulse is equal totp

556 fs.

APPENDIX B: PHOTON ECHO FROM STRONGLY
INHOMOGENEOUSLY BROADENED TRANSITION
EXPOSED TO GAUSSIAN–NON-MARKOVIAN
RANDOM MODULATION

In condensed phases, in addition to a Gaussian ran
modulation of an optical transition, a large inhomogeneo
broadening exists due to the variation in local environme
of individual molecules. Let us calculate the photon ec
signal attenuation in such a system excited with two sh
light pulses of frequencyv with wave vectorsk1 and k2

separated by a time intervalt2 . In a two-pulse echo experi
ment they measure the energy of signalk352k22k1 ~Refs.
29–31!,

J~ t2!5E
t2

`

I 3~ t !dt, ~B1!
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where the intensity of thek3 signal,I 3(t);uP(3)1(r ,t)u2, is
given by Eq.~18! of Ref. 32,

I 3~ t !;w4~ t2t2!w4~ t2!w22~ t !, ~B2!

for a classical Gaussian random modulation of the opt
transition with the correlation function of energetic fluctu
tions K(t) @k(t)5\2K(t)#. Here P(3)1(r ,t) is the ampli-
tude of the positive frequency component of the cubic po
ization,

w~ t !5expF2\22E
0

t

~ t2t!K~t!dtG , ~B3!

is a relaxation function.
In the situation considered, one can representK(t) in

the form of two contributions: a staticKst(t)'const
5Kst(0), which is responsible for a large inhomogeneo
broadening, and a ‘‘dynamical’’Kdyn(t): K(t)5Kst(0)
1Kdyn(t). Correspondingly,w(t)5wst(t)wdyn(t) where

wst~ t !'expF2\22E
0

t

~ t2t!Kst~0!dtG
5expF2

1

2\2
Kst~0!t2G . ~B4!

Using Eqs.~B1!, ~B2!, and~B4!, we obtain

J~ t2!;E
t2

`

exp@2\22Kst~0!~ t22t2!2#wdyn
4 ~ t2t2!

3wdyn
4 ~ t2!wdyn

22~ t !dt. ~B5!

For a large inhomogeneous broadening whenKst(0)
@Kdyn(0), i.e., the ‘‘static’’ broadening far exceeds the d
namical one, exp@2\22Kst(0)(t22t2)2#;d(t22t2), and
one obtains from Eq.~B5! ~see also Refs. 33, 34, and 30!.

J~ t2;wdyn
8 ~ t2!wdyn

22~2t2!. ~B6!

Substituting Eq.~B3! for wdyn(t) into Eq. ~B6!, with a little
manipulation we get

J~ t2!;expH 28\22Kdyn~0!

3H E
0

t2
~ t22t!@Sdyn~t!2Sdyn~2t!#dtJ J , ~B7!

whereSdyn(t)[Kdyn(t)/Kdyn(0) is the normalized correla
tion function.

In the slow modulation limit when\2Kdyn(0)ts
2@1

wherets5*0
`Sdyn(t)dt is the correlation time,t2!ts . Then

we may expand the expression in the square brac
in the integrand of Eq.~B7! to lowest nonvanishing order
For a differentiable Gaussian processSdyn(t)2Sdyn(2t)
52(3/2)S̈dyn(0)t2. Using the last equation results in

J~ t2!;exp@2~ t2 /T8!4#, ~B8!

with the characteristic decay time

T85~2\2/K̈dyn~0!!1/4, ~B9!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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where K̈dyn(0)5Kdyn(0)S̈dyn(0). Thus, the magnitude
(2K̈dyn(0)/\2)1/4 plays the role of the irreversible dephasin
time for a differentiable Gaussian process.

In the fast modulation limit whent2@ts , Eq. ~B7! re-
duces to the well-known relation between the echo sig
and the homogeneous dephasing rate.30 For a Gaussian ran
dom process with the Gaussian correlation functionKdyn(t)
5Kdyn(0)exp@21/2(t/ts)

2#, one can obtain an expressio
which holds for any relation betweent2 andtc :

J~ t2!;expH 28\22Kdyn~0!ts
2H exp~2x2!@12 1

4

3exp~23x2!#2
3

4
1Apx@erf~x!2 1

2 erf~2x!#J J ,

~B10!

where the following designation was used:x5t2 /(A2ts). In
the slow modulation limit Eq.~B10! gives the result
corresponding to Eqs.~B8! and ~B9!, where K̈dyn(0)
52Kdyn(0)/ts
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