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Nonperturbative analytic approach to the interaction of intense ultrashort
chirped pulses with molecules in solution: Picture of ‘‘moving’’
potentials
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A nonperturbative analytic approach to the problem of the interaction of high-power chirped
ultrashort pulses with a molecular system coupled with a dissipative environment has been
developed. We considered the model of the Gaussian–Markovian stochastic modulation of the
optical transition of a molecule in solution. The calculation results agree qualitatively with the
experimental results by Shanket al. The theory naturally leads to the picture of ‘‘moving’’
potentials which are ‘‘photonic replications’’ of the ground and excited electronic states. An
electronic optical transition induced by chirped pulses can be considered as an electron transfer
reaction between a ‘‘moving photonic replication’’ and the corresponding term occurring at their
instantaneous intersection. This clear picture explains not only the main features of the behavior of
the excited state population as a function of the chirp rate, but fine details of it as well. ©1998
American Institute of Physics.@S0021-9606~98!00835-6#
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I. INTRODUCTION

The interaction of chirped~and in particular high-power!
ultrashort pulses with molecular systems is the topic of
tive recent research.1–13 The phase structure~chirp! of the
pulse determines the temporal ordering of its different f
quency components that enables us to control molec
dynamics.14 This property of chirped pulses can be ess
tially enhanced by going beyond the perturbative regime
to the multiphoton processes of exciting molecules.13

The effects of varying the chirp and intensity of an u
trashort pulse exciting the laser dye molecules LD690
LDS750 in liquid solutions have been investigated expe
mentally by Shanket al.13 For low-power excitation, they
found that the absorption and the amount of excited s
population were independent of the chirp, while for hig
power excitation the authors observed a strong chirp dep
dence.

The interaction of strong radiation~and especially in-
tense chirped pulses! with large molecules in solutions i
rather a complex problem. This problem involves two typ
of nonperturbative interactions: light–matter and relaxat
~non-Markovian! ones.15–17 Therefore, the majority of non
perturbative light–matter descriptions was carried out
solving numerically the corresponding sets of equations
molecular systems noncoupled4,13,18,19and coupled20,21 with
a dissipative environment.

Shanket al.13 have performed numerical quantum m
chanical calculations of the effect of variable-intens
chirped pulse on a one-dimensional displaced harmonic
cillator model. They noted that the calculation itself w
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purely quantum mechanical and thus had no dissipation i
although they were modeling a dissipative system.

In Refs. 15 and 16 the problem of calculating the no
linear polarization of electronic transitions in a strong
broadened vibronic system with dissipation in a field of
tense ultrashort pulses without phase modulation, has b
solved. The solution was based on the fact that the irrev
ible dephasing time of the electronic transitionT8 for such a
system was much shorter than both the vibrational relaxa
time and pulse durationtp .

This problem is similar to that of calculating chemic
reactions under strong interaction.22,23Let us consider a mol-
ecule with two electronic statesn51 and 2 in a solvent
described by the Hamiltonian

H05 (
n51

2

un&@En1Wn~Q!#^nu, ~1!

whereE2.E1 ,En is the energy of staten,Wn(Q) is the adia-
batic Hamiltonian of reservoirR ~the vibrational subsystem
of a molecule and a solvent interacting with the two-lev
electron system under consideration in staten).

The molecule is affected by electromagnetic radiation
frequencyv:

E~ t !5 1
2 E~ t !exp~2 ivt !1c.c. ~2!

One can describe an electronic optical transition as
electron–transfer reaction between ‘‘photonic replicatio
18 of state 1 and state 2~or between state 1 and ‘‘photoni
replication’’ 28 of state 2! induced by the disturbanceV(t)
52D21–E(t)/2, whereD is the dipole moment operator of
solute molecule. The wave function of the system can
expanded in Fourier series due to the periodic dependenc
the disturbance on time:C(x,t)5(2`

` cn(x,t)exp@2i(«
3 © 1998 American Institute of Physics
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1nv)t#, wherecn(x,t) is a slowly varying function. Photo
nic ‘‘replication’’ 1 8 corresponds to the ground state wa
function for n51. The influence of the vibrational sub
systems of a molecule and a solvent on the electro
transition within the range of definite vibronic transitio
0→k related to high frequency optically active~OA! vibra-
tion ('100021500 cm21) can be described as a modulatio
of this transition by low frequency~LF! OA vibrations
$vs%.

24–27 In accordance with the Franck–Condon princip
an optical electronic transition takes place at a fixed nuc
configuration. Therefore, the highest probability of optic
transition is near the intersectionQ0 of ‘‘photonic replica-
tion’’ and the corresponding term@see Fig. 1 where the gen
eralized coordinate of the reservoir is denoted bya ~see be-
low!# and rapidly decreases asuQ2Q0u increases~the
contact approximation!. The quantity u1(Q)5W2(Q)
2W1(Q)2^W2(Q)2W1(Q)&1 is the disturbance of nuclea
motion under electronic transition. Here^ &n[TrR(¯rRn

)
denotes the trace operation over the reservoir variables in
electronic staten,

rRn
5exp~2bWn!/TrR exp~2bWn!, b51/kBT.

Electronic transition relaxation stimulated by LFOA v
brations is described by the correlation functionK1(t)
5^u1(0)u1(t)&1 of the corresponding vibrational distu
bance with characteristic attenuation timets .28–37For broad
vibronic spectra satisfying the ‘‘slow modulation’’ limit, we
have

s2sts
2@1, ~3!

wheres2s5K1(0)\22 is the LFOA vibration contribution to
a second central moment of an absorption spectrum. Acc
ing to Refs. 36 and 37, the following times are characteri
for the time evolution of the system under considerati
s2s

21/2,T8!ts , where s2s
21/2 and T85(ts /s2s)

1/3 are the
times of reversible and irreversible dephasing of the e

FIG. 1. Effective potentials corresponding to electronic states 1,2 and
‘‘photonic replications.’’
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tronic transition, respectively. The characteristic frequen
range of changing the optical transition probability can
evaluated as the inverseT8, i.e., (T8)21. Thus, one can con
siderT8 as a time of the optical electronic transition. Ther
fore, the inequalityts@T8 implies that the optical transition
is instantaneous and the contact approximation is corr
This made it possible to describe vibrationally nonequil
rium populations in electronic states 1 and 2 by balan
equations for the intense pulse excitation~pulse durationtp

.T8). Such a procedure has enabled us to solve the prob
for strong pulses without phase modulation.15–17

Now let us consider the phase modulated pulses. In
case the field amplitudeE(t) can be presented in the form

E~ t !5E~ t !exp~ iw~ t !!, ~4!

whereE(t) and w(t) are real functions of time, andw(t)
describes the change of the pulse phase in a timet. In this
case the ‘‘photonic replications’’ move vertically due to th
variation of the pulse frequencyv(t)5v2(dw/dt) with the
time. Accordingly, the intersection of ‘‘photonic replica
tion’’ and the corresponding term will slide along the ter
~see Fig. 1!. If this sliding is relatively slow, the electronic
transition occurs at instantaneous intersections of ‘‘photo
replication’’ and the corresponding term, and the contact
proximation is correct. If the sliding is rather fast, the ele
tronic transition has no time to occur at the narrow reg
near the instantaneous intersection, and the contact app
mation is inapplicable.

Since T8 can be considered as a time of an electro
transition, we can formulate a criterion for the correctness
the contact approximation in the case of phase modula
pulses as the following:

Udv~ t !

dt UT8,~T8!21, ~5!

i.e., the variation of the pulse frequency in a timeT8 must be
smaller than the characteristic frequency range of chang
the optical transition probability.

In this work the approach developed in Refs. 15 and
has been generalized for the case of chirped pulses. The
line of the paper is as follows. In Sec. II we obtain equatio
for the populations of molecular electronic states under
action of chirped pulses when the interaction with reserv
R can be described as the Gaussian–Markovian modula
In Sec. III we solve the obtained equation for the populat
inversion of the nonequilibrium electronic states. In Sec.
we present the calculation results, their discussion and a
them to the experiments by Shanket al.13 In Sec. V we sum-
marize our results. In the Appendices we solute the equa
for the population inversion of the nonequilibrium electron
states for the case of rectangular pulses with no phase m
lation, and calculate the cubic susceptibility of the syst
under consideration excited with linearly chirped Gauss
pulses, without using the balance approximation. We ob
a more refined criterion for the correctness of the bala
approximation in the case of exciting with phase modula
pulses.
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II. DERIVATION OF EQUATIONS FOR POPULATIONS
OF ELECTRONIC STATES UNDER THE ACTION
OF CHIRPED PULSE

We suppose that\vs!kT. Thus$vs% is an almost clas-
sical system and operatorsWn are assumed to be stochas
functions of time in the Heisenberg representation. T
quantityu1 can be considered as a stochastic Gaussian v
able. We consider the case of the Gaussian–Markovian
cess whenK1(t)/K1(0)[S(t)5exp(2utu/ts). The model of
the Gaussian–Markovian stochastic modulation of the o
cal transition of a molecule in solution has been used for
description of a non-Markovian relaxation behavior in
number of ultrafast optical experiments.38–41 The equations
for the diagonal elements of the density matrix of this syst
can be obtained by Refs. 15, 16, 22, 23, and 42:

]

]t
r j j ~a,t !52 i\21@H0~a,t !2D–E~ t !,r~a,t !# j j

1L j j r j j ~a,t !, ~6!

where j 51,2; a52u1 /\, and the operatorL j j is deter-
mined by the equation

L j j 5ts
21F11~a2d j 2vst!

]

]~a2d j 2vst!

1s2s

]2

]~a2d j 2vst!
2G , ~7!

d i j is the Kronecker delta,vst is the Stokes shift of the
equilibrium absorption and luminescence spectra. The pa
density matrix of the systemr j j (a,t) describes the system
distribution in states 1 and 2 with a given value ofa at time
t. The complete density matrix averaged over the stocha
process which modulates the system energy levels, is
tained by integration ofr j j (a,t) over a:

^r& j j ~ t !5E r j j ~a,t !da, ~8!

where quantitieŝr& j j (t) are nothing more nor less than th
normalized populations of the corresponding electro
states:̂ r& j j (t)[nj , n11n251.

Let us consider now the equation for the nondiago
element of the density matrixr21. According to the fact that
s2s

21/2,T8!t, the characteristic variation time ofr̃21

5 r21 exp(ivt) is ;T8, which is substantially smaller tha
the vibrational relaxation timets of populationsr j j (a,t).
Therefore, one can approximately write15,16

]

]t
r̃21~a,t !1 i ~v212v2a!r̃21~a,t !

'
i

2\
D21–E~ t !D8~a,t !, ~9!

wherev21 is the frequency of Franck–Condon transition
→2, D8(a,t)5r11(a,t)2r22(a,t). Solving Eq. ~9! for
r̃21(a,t) and substituting for the corresponding expression
Eq. ~6!, we obtain
e
ri-
o-
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]

]t
r j j ~a,t !5~21! j~2\2!21 Re E

0

t

dx~D12E~ t !!

3~D21E~ t2x!!D8~a,t2x!exp$2 i @w~ t !

2w~ t2x!1~v212v2a!x#%

1L j j r j j ~a,t !. ~10!

The values of the variablex, giving the main contribution to
the integral on the right-hand side of Eq.~10!, are confined to
the characteristic time of changingr̃21(a,t) which is about
x;T8!t. Therefore, one can substitutet in the upper limit
of this integral by`. Furthermore, we will disregard by
changing the population differenceD8(a,t) and the field am-
plitude E(t) during timeT815,16 and take into account only
the linear changes of the field phase during timex which
is order of the irreversible dephasing timeT8: w(t2x)
'w(t)2(dw/dt)x. As a result we will obtain from Eq.~10!,

]

]t
r j j ~a,t !5~21! j\22~p/2!d~v212v~ t !

2a!uD21E~ t !u2D8~a,t !1L j j r j j ~a,t !,

~11!

wherev(t)5v2@dw(t)/dt#. Equation~11! is the generali-
zation of Eq.~6! of Ref. 16 for the case of chirped pulse
The second term on the right-hand side of Eq.~11! describes
the diffusion with respect to the coordinatea in the corre-
sponding effective parabolic potentialU j (a) where@see Eq.
~7!#

U j~a!5Ej1\~a2d j 2vst!
2/~2vst!, ~12!

and the coefficient of diffusiond5s2sts
215(T8)23 is ex-

pressed in terms of the irreversible dephasing timeT8. The
potentialsU j (a) are shown in Fig. 1. The first term on th
right-hand side of Eq.~11! describes transitions between th
electronic states which occur ata5v212v(t), i.e., at in-
stantaneous intersections of ‘‘photonic replications’’ 18 and
28 with states 2 and 1, respectively.

The Green’s function of Eq.~11!,16

Gj j ~a,t;a8,t8!5@2ps~ t2t8!#21/2 exp$2@~a2d j 2vst!

2~a82d j 2vst!S~ t2t8!#2/~2s~ t2t8!!%,

~13!

gives the conditional probabilities for a stochastic Gauss
process. In the last equations(t2t8)5s2s@12S2(t2t8)#.
Integration of Eq.~11! is achieved by the Green’s functio
~13! for the initial condition

r j j
~0!~a!5d j 1~2ps2s!

21/2 exp@2a2/~2s2s!#. ~14!

We obtain

r j j ~a,t !5r j j
~0!~a!1~21! j\22~p/2!

3E
0

t

dt8uD21E~ t8!u2D8~v212v~ t8!,t8!

3Gj j ~a,t;v212v~ t8!,t8! ~15!

or
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D8~a,t !5D8~0!~a!2sa~v21!A2ps2s

3E
0

t

dt8J~ t8!D8~v212v~ t8!,t8!

3(
j 51

2

Gj j ~a,t;v212v~ t8!,t8!, ~16!

where v(t8)5v2@dw(t8)/dt8#, sa(v21) is the cross sec
tion at the maximum of the absorption band,J(t) is the
power density of the exciting radiation. The quant
D8(v212v(t),t) is the solution of the integral equatio
which is obtained from Eq.~16! for a5v212v(t),

D~ t !5exp@2~v212v~ t !!2/~2s2s!#

2sa~v21!E
0

t

dt8J~ t8!D~ t8!R8~ t,t8!, ~17!

where D(t)[A2ps2sD8(v212v(t),t) is a dimensionless
quantity, and the quantity

R8~ t,t8!5@s~ t2t8!/s2s#
21/2(

j 51

2

exp$2@v~ t !

2v j~ t,t8!#2/@2s~ t2t8!#% ~18!

describes the contributions from the induced absorptionj
51) and the induced emission (j 52) to D(t). Here

v j~ t,t8!5v212d j 2vst1~v~ t8!2v211d j 2vst!S~ t2t8!
~19!

are the first moments of the transient absorption (j 51) and
the emission (j 52) spectra. The origin of the termv(t8) on
the right-hand side of Eq.~19! reflects the fact that the firs
momentsv j (t,t8) ‘‘feel’’ the changes in the instantaneou
intersections of ‘‘photonic replications’’ and the correspon
ing terms at time momentst8 during the relaxation to the
equilibrium valuesv212d j 2vst at a time momentt>t8.

Equation~17! is the main result of this work. It is Volt-
erra’s integral equation of the second order. This equatio
a generalization of Eq.~12! of Ref. 16 for the case of phas
modulated pulses.

The quantityD(t) enables us to calculate the populatio
of the electronic statesnj (t) and the light absorption, whe
the molecule is excited with strong chirped pulses. Us
Eqs.~8!, ~13!, ~14! and ~15!, we obtain

nj~ t !5d1 j1~21! jsa~v21!E
0

t

J~ t8!D~ t8!dt8. ~20!

The positive frequency component of the polarization is
pressed in terms ofD8(a,t),15,16

P1~ t !5ND12E r̃21~a,t !da

5
iND12

2\ E
0

t

dt1E
2`

`

daD8~a,t2t1!D21•E~ t2t1!

3exp@2 i ~v212v2a2w~ t2t1!!#, ~21!

whereN is the density of particles in the system. Disrega
ing by changing the population differenceD8(a,t) and the
-

is

g

-

-

field amplitudeE(t) in time t1 like before and taking into
account only the linear changes of the field phase in
time: w(t2t1)'w(t)2 (dw/dt)t1 , we obtain

P1~ t !5
iND12

2\
~D21–E~ t !!E

0

t

dt1E
2`

`

daD8~a,t !

3exp@ i ~v~ t !2v211a!t1#.

Passing to the susceptibilityx5P1(t)/(E(t)/2) and inte-
grating with respect tot1 , we have

x52
NuD12u2

\ E
2`

`

daD8~a,t !

3F P

v~ t !2v211a
2 ipd~v~ t !2v211a!G , ~22!

whereP is the symbol of the principal value. As a result w
obtain for the imaginary part of the susceptibility, describi
an absorption~amplification! of field E(t):

Im x~v~ t !,t !5
NpuD12u2

\
D8~v212v~ t !,t !. ~23!

III. SOLUTION OF INTEGRAL EQUATION

Here we shall be concerned with the solution of the
tegral equation~17!. This equation can be exactly solved fo
two particular cases: rectangular pulses with no phase mo
lation ~see Appendix A!, and the fast vibrational relaxatio
~see below!.

A. Fast vibrational relaxation

Let us consider the particular case of fast vibration
relaxation when one can put the correlation functionS(t
2t8) equal to zero. Physically it means that the equilibriu
distributions into the electronic states have had time to be
during changing the pulse parameters. In the last case
function R8(t,t8) depends only on the variablet:

R8~ t !5(
j 51

2

exp$2@v~ t !2~v212d j 2vst!#
2/~2s2s!%,

~24!

and the integral equation, Eq.~17!, reduces to a differentia
equation of the first order.

Using Eqs.~17!, ~20! and ~24!, one can also obtain the
equations for the populations of electronic statesn1,2 in the
case under consideration:

dn1,2

dt
56sF@v~ t !#J~ t !$n22n1 exp@\b~v~ t !2vel!#%,

~25!

where sF@v(t)#5sa(v21)exp$2@(v212vst)2v(t)#2/
(2s2s)% is the cross-section of the induced emission at
frequency v(t), vel5(E22E1)/\ is the frequency of a
purely electronic transition. Whenv(t) does not depend on
time, Eqs.~25! coincide with the balance equations for m
lecular lasers.43 In the general case, Eqs.~25! can be consid-
ered as the generalization of these equations for the cas
chirped pulses.
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Solving Eqs.~25!, one can calculate the populations
electronic statesn1,2 and the quantityD(t) since @see Eq.
~20!#

D~ t !5@J~ t !sa~v21!#
21

dn2

dt
. ~26!

B. General case

Let us pass on to the solution of Eq.~17! in the general
case. It is an integral equation with a weakly singular ker
because the integrand functionR8(t,t8) tends to infinity for
t85t. In the vicinity of the pointt85t, R8(t,t8) displays a
d-shaped behavior:

lim
t8→t

R8~ t,t8!5A2ps2s (
j 51,2

d@v~ t !2v j~ t,t8!#.

Thus, in the small vicinity«̃ of t we have an integral of a
rapidly changing function R8(t,t8), and therefore
* t2 «̃

t
dt8J(t8)D(t8)R8(t,t8)'D(t)Jmaxtpf(t2«̃,«̃), where

f~ t2 «̃,«̃ !5~1/tp! f ~ t !E
t2 «̃

t

dt8R8~ t,t8!, ~27!

Jmax is the maximum value of the power density of the e
citing radiation and we introduced the normalized pu
shapef (t)5J(t)/Jmax.

Let us pass to the dimensionless variablex5t/tp . Then
we can transform Eq.~17! in the following way:

D̄~y!1Q8E
0

y

dx8
f̄ ~x8!R̄8~y1«,x8!

11Q8f̄~y,«!
D̄~x8!

5

expF2S v212v1
1

tp

dw̄~y!

dy
D 2Y ~2s2s!G

11Q8f̄~y,«!
, ~28!

where we denotedQ8[sa(v21)Jmaxtp , «5 «̃/tp and y5x
2«. The functions of the argumentx with an upper line
denote the corresponding function with no upper line of
argumentxtp , for example:D̄(x)5D(xtp) and so on.

The last integral equation is a nonsingular one. The
fore, it can be solved by the method of Ref. 44, where
approximation to the solution of an integral equation is fou
in the form of anN term Chebyshev series.

Let us calculate the functionf̄(y,«). In the small vicin-
ity « of x the function R̄8(x,x8) can be presented in th
following form:

R̄8~x,x8!'
1

A2j
(

j 51,2
exp~2Aj

2j!,

where

j5~ t2t8!/ts , Aj
25

S v~ t !2v211d j wvst2
d2w

dt2
tsD 2

4s2s
.

Using the last equations and Eq.~27!, we obtain
l

-
e

e

-
n
d

f̄~y,«!5Ap

2

ts

tp
f̄ ~y! (

j 51,2
Aj

21 erfS AjA«tp

ts
D , ~29!

where erf(z) is the error function.45

C. Calculation of populations of electronic states
n j„t …

The populations of electronic statesnj (t) can be calcu-
lated by an integration of the productJ(t)D(t) @see Eq.~20!#
that assumes a large volume of calculations. However,
can essentially reduce them in the following way.

Let us write an integral equation for the dimensionle
magnitudeM̄ (x)[ f̄ (x)D̄(x) which can be easily obtaine
by Eq. ~28!,

M̄ ~y!1Q8E
0

y

dx8
f̄ ~y!R̄8~y1«,x8!

11Q8f̄~y,«!
M̄ ~x8!

5

f̄ ~y!expF2S v212v1
1

tp

dw̄~y!

dy
D 2Y ~2s2s!G

11Q8f̄~y,«!
.

~30!

According to the method of Ref. 44 the solution of th
last equation is written in the form of the Chebyshev seri

M̄ ~y!5
c0

2
1 (

i 51

N21

ciTi S 2

b
y21D , ~31!

where c0 ,ci ( i 51,2,. . . ,N21) are the Chebyshev coeffi
cients for the functionM̄ (y), Ti are the Chebyshev polyno
mials andy<b ~the magnitudeytp5btp corresponds to the
time moment of the completion of pulse action!. Then the
population of the excited electronic staten2(t) @see Eq.~20!#
can be presented in the following form:

n2~ t !5n2~xtp!

5
Q8

2 H c0x1
bc1

4
@T2~z!21#

1b (
k52

N21

ckF Tk11~z!

2~k11!
2

Tk21~z!

2~k21!
1

~21!k11

k221 G J ,

~32!

wherez5(2/b)x21. In particular, fort5btp we obtain

n2~btp!5Q8bS c0

2
2 (

k51

k<~N21!/2
c2k

4k221D . ~33!

IV. RESULTS AND DISCUSSIONS

Let us study the influence of the chirp rate on the exci
state populationn2 after the completion of a pulse action
The calculation results, obtained by Eq.~33! for a Gaussian
pulse of the shape

E~ t ![E~ t !exp~ iw~ t !!5E0 expF2
1

2
~d22 im!t2G , ~34!
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as a function of the linear chirp ratem~ (dw/dt)5mt) are
shown in Figs. 2 and 3. Figure 2 shows a strong depende
of the shape of the curven2(m) on the initial detuningd
5v2v21 of the exciting pulse frequencyv with respect to
the frequency of Franck–Condon transitionv21.

Figure 3 illustrates the influence of the vibrational rela
ation time ts on the dependencen2(m). One can see tha
curves 1 and 2, corresponding to the values ofts which
exceed the pulse durationtp (ts.tp), have clearly defined
minima for small values of the chirp ratem as opposed to
curves 3 and 4 corresponding to fast vibrational relaxat
(ts!tp). This fact can be explained as follows. Let us su
pose thatts.tp . Then if the chirp rateumu rather large,
‘‘photonic replication’’ 18 moving vertically up or down~de-
pending on the chirp sign! will populate the electronic term

FIG. 2. The excited state populationn2 after the completion of the pulse
action as a function of the linear chirp ratem for different initial detunings
(v2v21)/vst51(1),0(2),20.8(3),0.5(4),20.5(5). Other parameters are
\vst /(2kBT)52.834, Q8[sa(v21)Jmaxtp52.5, ts /tp52. Insets to Figs. 2
and 5: Equilibrium spectra of the absorption (A) and the emission (E); the
arrows show the relative positions of the initial excitation frequencyv.

FIG. 3. The excited state populationn2 after the completion of the pulse
action as a function of the linear chirp ratem for different times of vibra-
tional relaxation.ts /tp52(1,2) and 0.2~3,4!; (v2v21)/vst520.5(1,3)
and 0.5~2,4!. Other parameters are identical to those of Fig. 2.
ce

-

n
-

2, leaving behind the ‘‘population tail’’~see Fig. 4~a!!. This
is due to the fact that the electronic transition occurs at
intersection of the terms. For the same reason, a reverse
sition from 2 to 18 is hindered. Thus, increasingumu will
favor to populating the excited electronic state 2, and the
fore one can see clearly defined minima for small values
the chirp ratem ~curves 1 and 2 in Fig. 3!. A similar discus-
sion can be provided for ‘‘photonic replication’’ 28 and elec-
tronic term 1, with the only difference that the ‘‘populatio
tail’’ occurs in ‘‘photonic replication’’ 28.

If the vibrational relaxation time is fast (ts!tp), the
shape of the population distribution in state 2 will not depe
on the chirp rate and will be close to the equilibrium dist
bution ~see Fig. 4~b!!.

It is also worth noting that the excited state populatio
n2 for fast vibrational relaxation~curves 3 and 4 of Fig. 3!
are larger than those corresponding to the values ofts.tp

~curves 1 and 2!.
Curves 5 and 1 of Figs. 2 and 3, respectively, are like

experimental data by Shanket al.13 ~Fig. 5~b!!. However, the
curves can not be directly linked to these data because
parameter2mtp /vst is proportional to parameterF9(n),
used by Shank, only for small chirp rates~see below!. The
point is that Shanket al. obtained chirped pulses by chan
ing the separation of pulse compression gratings. In the
case parametersd and m are no longer independent param
eters of a chirped pulse. They are coupled by the formula13

d252$tp0
2 1@2F9~v!/tp0#2%21, ~35!

m524F9~v!@tp0
4 14F92~v!#21, ~36!

where tp0 determines the duration of a transform limite
pulse, andF9(v)5F9(n)/(4p2) is the phase term.13

Figure 5~a! shows the calculation results of the excite
state populationn2 as a function ofF9(n) for the value of
the parametertp0511 fs used by Shanket al. The quantity
s2s is evaluated from the absorption spectrum of LD690
methanol:41 s2s'546 cm21. It gives a value of vst

5\s2s /(kBT)'1420 cm21 for the Stokes shift of the equi
librium absorption and luminescence spectra in the fram
work of a used model. The calculated dependen
n2(F9(n)) are confined to the values of an argume
uF9(n)u.10000 fs2, since our theory is correct only fo
pulse durations exceeding the irreversible dephasing tim
the electronic transition. One can see that curve 1 wh

FIG. 4. Populating the electronic term 2 from ‘‘moving photonic replic
tion’’ 1 8 in the case of~negative! chirp which is fast~a! and slow~b! with
respect to vibrational relaxation.

Boris Fainberg
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corresponds to the experimental value of the initial detun
(v2v21)/vst520.2 for LD690 in methanol, is much like
the corresponding experimental data~Fig. 5~b!!.

For low pulse energy~see curve 5!, n2 weakly depends
on the chirp rate according to the experiment.13

Figures 6~a! and 6~b! depict the absorption spectrum u
der high-power excitation which is determined by the qu
tity D @see Eq.~23!#, calculated by the solution of an integr
equation~28!, for positively chirped~PC! (m,0) and nega-
tively chirped~NC! (m.0) pulses. Calculation results~Fig.
6~a!! for small initial detuning (v2v21)/vst , close to ex-
perimental conditions,13 qualitatively agree with the experi
ment by Shanket al. ~Fig. 6~c!!. Figures 6~a! and 6~b! show
also a strong dependence of the absorption spectrum on
initial detunings (v2v21)/vst .

The NC pulse data show the gain~negative absorption!
of the red edge of the NC pulse which is in an agreem
with the experiment.13 The last effect can be also explaine
by the picture of moving ‘‘photonic replications.’’ For th
NC pulse, the effective populating of the excited state occ
at the initial time moment when the pulse is ‘‘blue’’~see Fig.
4 and the corresponding discussion above!. At the subse-

FIG. 5. The excited state populationn2 after the completion of the pulse
action as a function ofF9(n) for low- and high-power excitation.~a! Cal-
culation results for initial detunings (v2v21)/vst

520.2(1,5),0(2),0.5(3),20.5(4); other parameters are\vst /(2kBT)
53.38, Q8[sa(v21)Jmaxtp52.5(1 – 4) and 0.1~5!; ~b! Experimental data
for the laser dyes LD690 in methanol and LDS750 in acetonitrile~Ref. 13!.
g

-

the

t

rs

quent time moments when the pulse is ‘‘red,’’ the excit
state has been already occupied and its depopulating is
dered. Therefore, the created situation is favorable to
gain of the red edge of the NC pulse.

V. CONCLUSION

In this work we have developed a nonperturbative a
lytic approach to the problem of the interaction of hig
power chirped ultrashort pulses with a molecular syst
coupled with a dissipative environment. We considered
model of the Gaussian–Markovian stochastic modulation
the optical transition of a molecule in solution which ha
been used for the description of a non-Markovian relaxat
behavior in a number of ultrafast optical experiments.38–41

The theory is correct for conditions~5! when the variation of
a pulse frequency during the irreversible dephasing timeT8
of an optical transition must be smaller than the broaden
of the transition due to the irreversible dephasing proces
This condition is usually fulfilled for pulses~35! used in
experiment13 for moderate and large chirp rates. The dev
oped approach also holds for pulse intensities such
sa(v21)Jmax!(T8)21.15,16

The theory reduces the calculation of the absorpt
~emission! and populations of molecules in solution on hig
power chirped ultrashort pulse excitation to the solution
the integral equation for quantityD(t) @see Eq.~17!#. The
calculation results agree qualitatively with the experimen
results by Shanket al.13

FIG. 6. The absorption spectrum under high-power excitation for positiv
chirped~solid line! and negatively chirped~dashed line! pulses.~a!,~b! Cal-
culations of quantityD which determines the spectrum, for initial detuning
(v2v21)/vst520.05(1,2),20.5(3,4) and 0.5~5,6!; other parameters are
\vst /(2kBT)53.38, Q8[sa(v21)Jmaxtp52.5, ts /tp51, mtp /vst

520.8(1,3,5) and 0.8~2,4,6!. ~c! Experimental data for LD690 in methano
using positively chirped (F95104 fs2) and negatively chirped (F9
52104 fs2) pulses~Ref. 13!.
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The theory naturally leads us to the picture of ‘‘moving
potentials@Eq. ~11!# which are ‘‘photonic replications’’ of
the ground and excited electronic states. An electronic o
cal transition induced by chirped pulses, can be conside
as an electron transfer reaction between a ‘‘moving photo
replication’’ and the corresponding term occurring at th
instantaneous intersection. Changing the position of this
stantaneous intersection can occur even faster than the
cesses of vibrational relaxation in interacting potentials~de-
scribed as the diffusion with respect to the energe
coordinate!. This clear picture explains not only the ma
features of the behavior of the excited state population a
function of the chirp raten2(m), but fine details of it as well
~see Sec. IV!. We believe that the picture of ‘‘moving pho
tonic replications’’ will be useful also for a qualitative de
scription of the interaction of chirped high-power ultrash
pulses with molecular systems for models different from t
of the Gaussian–Markovian stochastic modulation.

The theory predicts a strong dependence of both
shape of the functionn2(F9(n)) and the absorption spec
trum under high-power excitation on the initial detuningd
5v2v21 of the exciting pulse frequencyv with respect to
the frequency of Franck–Condon transitionv21 @see Fig.
5~a! and Figs. 6~a! and 6~b!# which can be checked exper
mentally.

Finally, we will make some comments concerning t
possibility of the quantum mechanical treatment of the lo
frequency vibrational degrees of freedom of the system
the problem under consideration. One can not obtain a clo
equation for the population difference like Eq.~17! in the last
case.16 Therefore, we have proposed the construction of
Padéapproximants for obtaining a nonperturbative soluti
corresponding to the quantum treatment of vibrations, in
case of intense ultrashort pulses without phase modulatio16

Using such an approach in the case of chirped pulses
for further investigation.
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APPENDIX A: RECTANGULAR PULSE WITH NO
PHASE MODULATION

Let us consider the excitation of the system with a re
angular pulse with no phase modulation. Then Eq.~17! takes
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the form of the integral equation with a kernel which d
pends only on the difference of the time arguments:

D~ t !5exp@2~v212v!2/~2s2s!#

2sa~v21!JE
0

t

dt8D~ t8!R8~ t2t8! ~A1!

for timest<tp . The last equation can be solved with the a
of the Laplace transformation. For the Laplace-transform
the magnitudeD(t) we obtain

D̃~p!5exp@2~v212v!2/~2s2s!#/

$p@11sa~v21!JR̃8~p!#%, ~A2!

whereD̃(p) andR̃8(p) are the Laplace-transforms ofD8(t)
and R8(t), respectively. The magnitudeD(t) can be found
as an inverse Laplace-transform ofD̃(p).

APPENDIX B: FOUR-PHOTON APPROXIMATION

Let us consider the problem under investigation in t
four-photon approximation. The latter will enable us to o
tain a more detailed criterion of the correctness of our
proach.

The electromagnetic field~2! induces an optical polar
ization in the mediumP(r,t) which can be expanded in pow
ers of E(t).46 For cubic polarization of the system und
investigation, we obtain

P~3!~ t !5P~3!1~ t !1c.c.5N TrR~D12r21
~3!~ t !!1c.c., ~B1!

wherer (3) is the density matrix of the system calculated
the third approximation with respect toE(t).

The equation for the density matrix of the system can
written in the form

ṙ52 i ~L01L1!r, ~B2!

whereL0 andL1 are the Liouville operators defined by th
relationships L0r5\21@H0 ,r# and L1r5\21@2D
•E(t),r#. Solving this equation by perturbation theory wi
respect toL1 in the third order, and using the resonan
approximation, we findr (3).

When D12 does not depend on the nuclear coordina
~the Condon approximation!, the amplitude of the positive
frequency component of the cubic polarizationP(3)1(t)
(P(3)1(r,t)5P(3)1(t)exp(2ivt)) is given by the
formula25,26,32,47
P~3!1~ t !5
2 iND4

8\3 E E
0

`E dt1dt2dt3 exp$2@ i ~v212v!1g#t12T1
21t22gt3%

3exp@ i ~v212v!t3#F1~t1 ,t2 ,t3!E~ t2t12t2!E* ~ t2t12t22t3!

1exp@2 i ~v212v!t3#F2~t1 ,t2 ,t3!E~ t2t12t22t3!E* ~ t2t12t2!%E~ t2t1!, ~B3!
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where for simplicity we dropped all vector indices,D
5uDu, T15(2g2)21[(2g)21 is the lifetime of the excited
state 2. The functionsF1,2(t1 ,t2 ,t3) are sums of four-time
correlations functions corresponding to the four-photon ch
acter of light-matter interaction:

F1~t1 ,t2 ,t3!5K~0,t3 ,t11t21t3 ,t21t3!

1K~0,t21t3 ,t11t21t3 ,t3!, ~B4!

F2~t1 ,t2 ,t3!5K* ~0,t3 ,t21t3 ,t11t21t3!

1K* ~0,t11t21t3 ,t21t3 ,t3!, ~B5!

where

K~0,t1 ,t2 ,t3!5^exp~ iW̃2t1 /\!exp~ iW1~ t22t1!/\!

3exp~ iW̃2~ t32t2!/\!exp~2 iW1t3 /\!&1 ,

~B6!

are the four-time correlation functions which were intr
duced in four-photon spectroscopy by Mukamel,48,49 W̃2

5W22^W22W1&1 is the adiabatic Hamiltonian in the ex
cited state without the reservoir addition to the frequency
the Franck–Condon transition~the term^W22W1&1).

If the magnitudeu15W22W12^W22W1&1 is a Gauss-
ian one ~intermolecular nonspecific interactions, line
electronic–vibrational coupling, etc.!, and also in the case o
a weak electronic–vibrational coupling, irrespective of t
nature ofu1 , the four-time correlation functions can be re
resented in the form25,32,49

K~0,t1 ,t2 ,t3!5exp@g~ t32t2!1g~ t1!1g~ t22t1!

2g~ t2!2g~ t32t1!1g~ t3!#, ~B7!

where

g~ t !52\22E
0

t

dt8~ t2t8!K1~ t8! ~B8!

is the logarithm of the characteristic function of the spectr
of single-photon absorption after substraction of a te
which is linear with respect tot and determines the firs
moment of the spectrum,K1(t)5^u1(0)u1(t)&1 is the corre-
lation function ofu1 .

Because of the inequality~3! in the case under conside
ation, there is a large parameter in the exponents in Eq.~B7!.
This makes it possible to limit the expansion of these ex
nents to power series at the extremum pointst15t350 with
an accuracy up to the second order terms with respect tt1

andt3 :25–28,31,34,36,50

K~0,t3 ,t11t21t3 ,t21t3!

K* ~0,t3 ,t21t3 ,t11t21t3!
J 5exp@G7~t1 ,t2 ,t3!#, ~B9!

K~0,t21t3 ,t11t21t3 ,t3!

K* ~0,t11t21t3 ,t21t3 ,t3!
J 5exp@2 i2t1 Im ġ~t2!

1G7~t1 ,t2 ,t3!#, ~B10!

where
r-

f

-

G7~t1 ,t2 ,t3!52
s2s

2
@t1

21t3
272t1t3~Re S~t2!

6 i Im S~t2!!#, ~B11!

ġ(t2)5dg/dt2 . In the classical case, the term22 Im ġ(t2)
5vst@12S(t2)# describes the dynamical Stokes shift.36,50

As a consequence of condition~3!, timest1 andt3 @see
Eq. ~B3!# become fast.25–28,34 Therefore, we can use Eqs
~B9!, ~B10!, and ~B11! and integrate the right-hand side o
Eq. ~B3! with respect to them if the exciting pulses a
Gaussian with the linear chirp@see Eq.~34!#. This integration
is possible only if one can ignore changing the complex fi
amplitudeE(t) in a time;s2s

21/2.36 As a result, Eq.~B3! is
strongly simplified:

P~3!1~ t !5
1

8 E
0

`

dt2x~3!~v2mt,t,t2!E~ t !uE~ t2t2!u2,

~B12!

wherex (3)(v2mt,t,t2) is the cubic susceptibility. It can be
represented as a sum of two terms:

x~3!~v2mt,t,t2!5(
j 51

2

x j
~3!~v2mt,t,t2!, ~B13!

where indexj shows that the corresponding quantities a
related to the nonequilibrium processes in the absorptionj
51) or emission (j 52).

The contributionsx j
(3)(v2mt,t,t2) to the cubic suscep

tibility ~B13! can be written in the form

x j
~3!~v2mt,t,t2!52 iD 4~2p3!1/2N\23 exp~2t2 /T1!

3~s8~t2!!21/2F1
e~v2mt !w~zj !.

~B14!

Here F1
e(v2mt)5(2ps2s)

21/2 exp@2(v2mt2v21)
2/

(2s2s)] is the equilibrium absorption spectrum of the syste
under consideration at the frequencyv2mt,

w~z!5exp~2z2!F11~2i /Ap!E
0

z

exp~ t2!dtG
is the error function of the complex argument,45

zj5$ id2@t2~21S~t2!!2t~31S~t2!!#1v2mt

2v j~ t,t2t2!%/~2s8~t2!!1/2, ~B15!

wherev j (t,t2t2) is determined by Eq.~19! for dw(t)/dt
5mt, and the normalized correlation functionS(t2) is arbi-
trary and does not need to be exponential.

Equations~B14!, ~B15! and ~B16! ~see below! can be
considered as the generalization of the theory36 for the case
of chirped pulses. The termsw(zj ) on the right-hand side o
Eq. ~B14! describe contributions to the cubic polarizations
the nonequilibrium absorption and emission processes,
spectively. The first term on the right-hand side of Eq.~B15!
which is proportional tod2;1/tp

2 , takes into account the
contribution of the electronic transition coherence.36 One can
ignore this term for pulses longer than the irreversib
dephasing time of the electronic transition:tp@T8,36

The quantity
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s8~t2!5s2sH 12S2~t2!1
2

s2s
@2d21~d21 im!S~t2!#J

~B16!

is the time-dependent central second moment of the cha
related to nonequilibrium processes in the absorption~hole!
and the emission~spike! spectra. It is the generalization o
the quantitys(t2) used before and differ from that by th
third term in the square brackets on the right-hand side
Eq. ~B16!. This term plays the role of the pulse duration a
the chirp corrections to the hole or spike width. It is impo
tant immediately after the optical excitation whent2'0 and,
therefore,S(t2)'1.

Thus, the quantitys8(t2) transforms tos(t2) in the
domain oft2 such that 12S2(t2) is much larger than the
third term in the square brackets on the right-hand side
Eq. ~B16!. Taking into account only the chirp contribution t
this term~because the criterion of the validity of the balan
approach for nonchirped pulses has been already obtain
Ref. 36:tp51.665/d@T8), we have

sinh~t2 /ts!@umu/s2s . ~B17!

Equation~B17! and all the equations which follow, corre
spond to the exponential correlation functionS(t2)
5exp(2t2 /ts).

Let us assume that we are interested in the absorptio
the system which is determined by the imaginary part of
susceptibility~B13!. Then the value oft2 is determined by
the attenuation characteristic time of the real part of the e
function Rew(zj)5exp(2zj

2) which for t2!ts and tp@T8
has the following form: exp(2zj

2)5exp$2t2@v2m(t1ts)
2v211d j 2vst#

2/(4s2sts)%. We obtain the following evalu-
ation for a strict resonance for the absorption or the lumin
cence band at the time momentt(v2mt2v211d j 2vst

50):

t2;
4s2s

m2ts
5

4

m2T83 . ~B18!

Combining Eqs.~B18! and~B17! for t2 /ts!1, we have

~ umuT82!3!4. ~B19!

In other words, for the last condition the imaginary part
the cubic susceptibility~B13! coincides with Eq.~23!, if the
quantityD8(v212v(t),t) is calculated in the first order with
respect to the light intensityJ(t8) by Eq. ~17!. Thus, Eq.
~B19! ~together with the conditiontp@T8) can be considered
as a criterion of the validity of the balance approach
chirped pulses which conforms with criterion~5!.

If umuT8251, thenmts5(T8As2s)As2s.As2s, i.e., the
frequency changemts of the pulse in a vibrational relaxatio
time ts is larger than the bandwidth of the equilibrium a
sorption spectrum;As2s because (T8As2s).1.
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