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Nonperturbative analytic approach to the interaction of intense ultrashort
chirped pulses with molecules in solution: Picture of “moving”
potentials
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(Received 9 March 1998; accepted 9 June 1998

A nonperturbative analytic approach to the problem of the interaction of high-power chirped
ultrashort pulses with a molecular system coupled with a dissipative environment has been
developed. We considered the model of the Gaussian—Markovian stochastic modulation of the
optical transition of a molecule in solution. The calculation results agree qualitatively with the
experimental results by Sharét al. The theory naturally leads to the picture of “moving”
potentials which are “photonic replications” of the ground and excited electronic states. An
electronic optical transition induced by chirped pulses can be considered as an electron transfer
reaction between a “moving photonic replication” and the corresponding term occurring at their
instantaneous intersection. This clear picture explains not only the main features of the behavior of
the excited state population as a function of the chirp rate, but fine details of it as well99®
American Institute of Physic§S0021-9608)00835-6

I. INTRODUCTION purely guantum mechanical and thus had no dissipation in it,
although they were modeling a dissipative system.
The interaction of chirpe¢and in particular high-power In Refs. 15 and 16 the problem of calculating the non-

ultrashort pulses with molecular systems is the topic of aclinear polarization of electronic transitions in a strongly
tive recent research®® The phase structur&hirp) of the  broadened vibronic system with dissipation in a field of in-
pulse determines the temporal ordering of its different fretense ultrashort pulses without phase modulation, has been
quency components that enables us to control moleculgolved. The solution was based on the fact that the irrevers-
dynamicst* This property of chirped pulses can be essendble dephasing time of the electronic transitidh for such a
tially enhanced by going beyond the perturbative regime dugyStem was much shprter than both the vibrational relaxation
to the multiphoton processes of exciting molecfes. time and pulse duratioty,. _ _

The effects of varying the chirp and intensity of an ul- This problem is similar to that of calculating chemical

trashort pulse exciting the laser dye molecules LD690 anaeactlons under strong interactitt:* Let us consider a mol-

LDS750 in liquid solutions have been investigated experi—ecule with two electronic states=1 and 2 in a solvent

mentally by Shanket al® For low-power excitation, they described by the Hamiltonian

found that the absorption and the amount of excited state 2

population were independent of the chirp, while for high- Ho= 2, [N E,+Wo(Q)Kn|, 1)
power excitation the authors observed a strong chirp depen- =1

dence. whereE,>E,,E, is the energy of state,W,(Q) is the adia-

The interaction of strong radiatiofand especially in-  batic Hamiltonian of reservoiR (the vibrational subsystems
tense chirped pulsgsvith large molecules in solutions is of a molecule and a solvent interacting with the two-level
rather a complex problem. This problem involves two typeselectron system under consideration in state
of nonperturbative interactions: light—matter and relaxation = The molecule is affected by electromagnetic radiation of
(non-Markovian ones'®~!’ Therefore, the majority of non- frequencyw:
perturbative light—matter descriptions was carried out by
solving numerically the corresponding sets of equations for E()= z E(t)exp(—iwt)+c.c. 2

molecular systems noncoupfeld*®°and coupletf-?* with . . . .
One can describe an electronic optical transition as an

a dissipative environment. . » ) N
Shanket al2® have performed numerical quantum me- electron—transfer reaction between “photonic replication
' 1' of state 1 and state @r between state 1 and “photonic

chgmcal calculations of_ the gffect .of vanable—mteqsny replication” 2’ of state 2 induced by the disturbancé(t)
chirped pulse on a one-dimensional displaced harmonic os- —D,,-E(t)/2, whereD is the dipole moment operator of a

cillator model. They noted that the calculation itself wasggute molecule. The wave function of the system can be
expanded in Fourier series due to the periodic dependence of
dElectronic mail: fainberg@barley.cteh.ac.il the disturbance on timeW(x,t)=3=7_ ¢ (x,t)exd—i(e
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U tronic transition, respectively. The characteristic frequency
T range of changing the optical transition probability can be
evaluated as the inverdg, i.e., (T') L. Thus, one can con-
N / siderT’ as a time of the optical electronic transition. There-
T~ L’ > fore, the inequalityrs>T' implies that the optical transition
IE,+h:J' is instantaneous and the contact approximation is correct.
. This made it possible to describe vibrationally nonequilib-
rium populations in electronic states 1 and 2 by balance
-~ equations for the intense pulse excitatigulse duratiort,
3 >T'). Such a procedure has enabled us to solve the problem
5
3

huws,,

for strong pulses without phase modulation®’
Now let us consider the phase modulated pulses. In this
case the field amplitudg(t) can be presented in the form

E(t)=(texpio(t)), 4

Ez_‘FIEJ L ~J4- where #(t) and ¢(t) are real functions of time, ang(t)

L : a describes the change of the pulse phase in a tima this
0'q Wst case the “photonic replications” move vertically due to the
FIG. 1. Effective potentials corresponding to electronic states 1,2 and thei\r/,arlatlon of th_e pulse freguenay(t_) =w—(de/dy) ,Wlth th?
“photonic replications.” time. Accordingly, the intersection of “photonic replica-

tion” and the corresponding term will slide along the term
(see Fig. 1 If this sliding is relatively slow, the electronic
+nw)t], wherey,(x,t) is a slowly varying function. Photo- transition occurs at instantaneous intersections of “photonic
nic “replication” 1’ corresponds to the ground state wavereplication” and the corresponding term, and the contact ap-
function for n=1. The influence of the vibrational sub- proximation is correct. If the sliding is rather fast, the elec-
systems of a molecule and a solvent on the electronitronic transition has no time to occur at the narrow region
transition within the range of definite vibronic transition near the instantaneous intersection, and the contact approxi-
0—k related to high frequency optically actiy®A) vibra-  mation is inapplicable.
tion (=1000- 1500 cm'}) can be described as a modulation Since T’ can be considered as a time of an electronic
of this transition by low frequencyLF) OA vibrations transition, we can formulate a criterion for the correctness of
{wg}.?*~?"In accordance with the Franck—Condon principle,the contact approximation in the case of phase modulated
an optical electronic transition takes place at a fixed nucleapulses as the following:
configuration. Therefore, the highest probability of optical
transition is near the intersectidp, of “photonic replica- dw(t)

tion” and the corresponding terfisee Fig. 1 where the gen- dt T'<(T) ®)
eralized coordinate of the reservoir is denotedabfsee be-

low)] and rapidly decreases dQ__Qo| increases(the ¢  the variation of the pulse frequency in a tiflemust be
contact approximation The quantity u;(Q)=W2(Q)  smaller than the characteristic frequency range of changing
—Wy(Q) —(W2(Q) —Wy(Q))1 is the disturbance of nuclear ¢ gptical transition probability.

motion under electronic transition. Hete)n=Trr(*"pr) In this work the approach developed in Refs. 15 and 16,

denotes the trace operation over the reservoir variables in thgas been generalized for the case of chirped pulses. The out-

electronic staten, line of the paper is as follows. In Sec. Il we obtain equations
pr,=€Xp(— BW,)/Trg exp(— BW,), B=1kgT. for the populations of molecular electronic states under the

action of chirped pulses when the interaction with reservoir

Electronic transition relaxation stimulated by LFOA vi- R can be described as the Gaussian—Markovian modulation.
brations is described by the correlation functidty(t) In Sec. Il we solve the obtained equation for the population
=(u,(0)u4(t)), of the corresponding vibrational distur- inversion of the nonequilibrium electronic states. In Sec. IV
bance with characteristic attenuation time?®=>"For broad  we present the calculation results, their discussion and apply
vibronic spectra satisfying the “slow modulation” limit, we them to the experiments by Shaekal* In Sec. V we sum-
have marize our results. In the Appendices we solute the equation
for the population inversion of the nonequilibrium electronic
states for the case of rectangular pulses with no phase modu-
whereo,s=K,(0)% 2 is the LFOA vibration contribution to lation, and calculate the cubic susceptibility of the system
a second central moment of an absorption spectrum. Accordinder consideration excited with linearly chirped Gaussian
ing to Refs. 36 and 37, the following times are characteristiqoulses, without using the balance approximation. We obtain
for the time evolution of the system under consideration:a more refined criterion for the correctness of the balance
0, P<T' <74, where 0,2 and T' = (7s/0,5)® are the approximation in the case of exciting with phase modulated
times of reversible and irreversible dephasing of the elecpulses.

0'257'§> 1, 3
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Il. DERIVATION OF EQUATIONS FOR POPULATIONS p) , t
OF ELECTRONIC STATES UNDER THE ACTION Epjj(a,t)=(—1)1(2ﬁ2)‘1 ReJ dx(D2¢5(t))
OF CHIRPED PULSE 0

We suppose thdtw,<kT. Thus{wg} is an almost clas- X(DaZ(t=x))A" (e t=x)exp —i[ (1)

sical system and operatovg, are assumed to be stochastic —o(t—=X)+ (wpy—w—a)x]}
functions of time in the Heisenberg representation. The
guantityu, can be considered as a stochastic Gaussian vari- +Ljjpji(ast). (10

able. We consider the case of the Gaussian—Markovian prorhe values of the variabbe, giving the main contribution to

cess wherK;(t)/K;(0)=S(t) =exp(-[tl/7). The model of  the integral on the right-hand side of E40), are confined to
the Gaussian—Markovian stochastic modulation of the Optithe characteristic time of changifig,(«,t) which is about

cal transition of a molecule in solution has been used for th§(~-|-/<t_ Therefore, one can substitutén the upper limit

description of a non-Markovian relaxation behavior in a ¢ s integral byoc. Furthermore, we will disregard by
number .Of ultrafast optical experime.r?‘f‘s‘.41 The equ_ations changing the population differendg (a,t) and the field am-
for the diagonal elements of the density matrix of this syster’rb"tude #(t) during timeT'516 and take into account only

can be obtained by Refs. 15, 16, 22, 23, and 42: the linear changes of the field phase during tiRevhich
P is order of the irreversible dephasing tinie: ¢(t—Xx)
Ep”(a',t)= —in Y Hy(a,t)— D-E(t),p(a,1)]j ~ ¢(t) — (de/dt)x. As a result we will obtain from Eq10),

) )
+Ljjpji(est), (6) Ep”(a,t)=(—1)Jﬁ_2(77/2)5(w21—w(t)

where j=1,2; «=—u,/h, and the operatot j; is deter-

mined by the equation — @)D (A () +Ljpj(ait),

11
Ljj= 1+ (a— 820s) 7 wherew(t) = w—[de(t)/dt]. Equation(1l) is the generali-
d(a— Sjpwst) zation of Eq.(6) of Ref. 16 for the case of chirped pulses.

The second term on the right-hand side of Bd) describes
, (7) the diffusion with respect to the coordinatein the corre-
sponding effective parabolic potentidl(«) where[see Eqg.

8 is the Kronecker deltaws, is the Stokes shift of the (7)]

equilibrium a'bsorption and luminescence ;pectra. The partial Uj(@)=E;+#(a— 51_2%02/(2&)50! (12)
density matrix of the system;;(«,t) describes the system o - 1 s
distribution in states 1 and 2 with a given valuewft time ~ @nd the coefficient of diffusionl=os7s "=(T") " is ex-
t. The complete density matrix averaged over the stochastieressed in terms of the irreversible dephasing tie The

process which modulates the system energy levels, is ofotentialsU;(«) are shown in Fig. 1. The first term on the
tained by integration of;; (a,t) over a: right-hand side of Eq(11) describes transitions between the

electronic states which occur at=w,;— w(t), i.e., at in-

stantaneous intersections of “photonic replications” dnd
<p>ii(t):f pij(a.t)da, ® 2 with states 2 and 1, respectively.
The Green’s function of Eq11),°

(92
+ O
20 a— 8jpws)?

where quantitiegp);;(t) are nothing more nor less than the . 1
normalized populations of the corresponding electronicGji(a.tia’ t")=[2ma(t—t")]" " exp{ ~[(a— Sj20s)

StateS:(p)jj(t)Enj , N+ n2=1. ' ' —(a'—5j2wst)S(t—t’)]2/(2(r(t—t'))},
Let us consider now the equation for the nondiagonal
element of the density matrix,,. According to the fact that (13
-1/2

0, <T'<t, the characteristic variation time op,;  gives the conditional probabilities for a stochastic Gaussian
= p,; explot) is ~T’, which is substantially smaller than process. In the last equatian(t—t') =0, 1—S*(t—t")].

the vibrational relaxation times of populationsp;;(a,t). Integration of Eq.(11) is achieved by the Green'’s function
Therefore, one can approximately wiité® (13) for the initial condition
J -~ _ - piP (@)= 81(2ma) M exi —a?l(2059)]. (1)
— ) +i(wo—w— t _
ot poa,t) Ti(wmn—w—a)py(a,t) We obtain
i , pij(at)=p{P (@) +(=1)i~%(ml2)
~%Dzl‘E(t)A (a,t), ©) . I

t
] - X ’ ;)( INI2A 7 _ ’ , ’
where w,; is the frequency of Franck—Condon transition 1 fodt D2 (1) PA" (0= (), 1)

—2, A(a,t)=pq(a,t)—pofa,t). Solving Eqg. (9) for
poa(a,t) and substituting for the corresponding expression in
Eq. (6), we obtain or

XGjj(a,twy—w(t'),t") (15)
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A (a,t)=A"O(a)— oy(wa) V200 field amplitude(t) in time 7, like before and taking into
: account only the linear changes of the field phase in this
Xf AU IU)A (g w(t) 1) time: ¢(t—7,)~ ¢(t)— (de/dt)7;, we obtain
° . iNDy Cooe
2 P (t)= o7 (D21-E(t))J0drlJ_mdaA (a,t)
X,Zl Gjj(atiwy—w(t),t"), (16)

Xexgi(w(t)—wy+ a)7r].
where w(t’)=w—[de(t')/dt'], o,(w,y) is the cross sec-
tion at the maximum of the absorption bani{t) is the
power density of the exciting radiation. The quantity
A'(wy— o(1),t) is the solution of the integral equation N|D? (= ,
which is obtained from Eq(16) for a= w,;— w(t), X=——% LmdaA (a,t)

A(t)=exl — (wz1— (1)?/(209)]

Passing to the susceptibility=P " (t)/(E(t)/2) and inte-
grating with respect ta;, we have

X —imé(w(t)—wyt+a)l, (22

t —wyt+
—aa(wzgf dt’ I(t)A(L)R (t,1), 17) o(t) — ozt a

0 whereP is the symbol of the principal value. As a result we
where A(t)=\2mo,A’ (w1~ w(t),t) is a dimensionless obtain for the imaginary part of the susceptibility, describing
quantity, and the quantity an absorptiorfamplification of field E(t):

2 N77'|Dlz|2 ,
R/ (t,t)=[o(t—t') o] 2>, exp{—[w(t) Im x(o(t),t)= ————A" (0~ w(H),1). (23
=1
—wj(t,t") [ 20(t—t")]} (18)  11I. SOLUTION OF INTEGRAL EQUATION

describes the contributions from the induced absorptijon ( Here we shall be concerned with the solution of the in-

=1) and the induced emission<2) to A(t). Here tegral equatior{17). This equation can be exactly solved for
wj(t,1) = wp— S0+ ((t') — woy+ Sjws) S(t—t") two particular cases: rectangular pulses with no phase modu-
(19  lation (see Appendix A and the fast vibrational relaxation

are the first moments of the transient absorptipa 1) and (see below

the emission (= 2) spectra. The origin of the term(t’) on  A. Fast vibrational relaxation
the right-hand side of Eq19) reflects the fact that the first
momentsw;(t,t") “feel” the changes in the instantaneous
intersections of “photonic replications” and the correspond-
ing terms at time moments during the relaxation to the

Let us consider the particular case of fast vibrational
relaxation when one can put the correlation functiggt
—t") equal to zero. Physically it means that the equilibrium
distributions into the electronic states have had time to be set

o Y : ,
equ:|_:|br|u?1 vallue.sfu#] Oj2ws AL alttlr??hmomeﬂtit_ .V it during changing the pulse parameters. In the last case the
quation(17) is the main result of this work. It is Volt- functionR’(t,t’) depends only on the variabte

erra’s integral equation of the second order. This equation is

a generalization of Eq12) of Ref. 16 for the case of phase 2 ,
modulated pulses. R'(UIZl exp{—[(t) = (w21~ 8j2ws) 7(2025)},
The quantityA (t) enables us to calculate the populations = (24)

of the electronic states;(t) and the light absorption, when _ _ _ _
the molecule is excited with strong chirped pulses. Using@nd the integral equation, E(L7), reduces to a differential

Egs.(8), (13), (14) and(15), we obtain equation of the first order.
Using Egs.(17), (20) and (24), one can also obtain the
n()=o,+(—1)o (wzﬁftJ(t')A(t’)dt'. (20) equations for the populations of electronic states in the
) ! a 0 case under consideration:
The positive frequency component of the polarization is ex-  dn; ,
pressed in terms ok’ (a,t),*>16 gi = T oele(®13(Oin—ny exffif(w(t) —we) I},
(25)

P (0=NDs | Faa)de where  ga[0(t)]=0a(@z)eXp~[(0z1- 0s) — ()17

. . (2044)} is the cross-section of the induced emission at the
delf daA’(a,t—7,)Dyy E(t—77) frequency w(t), we=(E;—E;)/% is the frequency of a
0 — purely electronic transition. Whea(t) does not depend on
. time, Egs.(25) coincide with the balance equations for mo-
xex ~i(wy— - a=e(t=7))], @D Jecular laserd® In the general case, Eq®5) can be consid-
whereN is the density of particles in the system. Disregard-ered as the generalization of these equations for the case of
ing by changing the population differene€ («,t) and the chirped pulses.

_iNDy,
2%
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Solving Egs.(25), one can calculate the populations of  __ T Te— et,
electronic states; , and the quantityA(t) since[see Eq. oy, e)= CT fly) 2 At erf(Ai —) (29
(20] oo b

dn where erfg) is the error functiod®
_ 2
AW =[IO)Ta(wz0)] 5 (26) | | |
C. Calculation of populations of electronic states
n;i(t)

The populations of electronic statag(t) can be calcu-

Let us pass on to the solution of EQ.7) in the general lated by an integration of the produdtt) A(t) [see Eq(20)]
case. It is an integral equation with a weakly singular kernethat assumes a large volume of calculations. However, one
because the integrand functi®i(t,t’) tends to infinity for  can essentially reduce them in the following way.

B. General case

t’=t. In the vicinity of the pointt’=t, R’(t,t") displays a Let us write an integral equation for the dimensionless
o-shaped behavior: magnitudeM (x)=f(x)A(x) which can be easily obtained
by Eq. (28),

lim R'(t,t’)=\/2mz$,2125[w(t)—wj(t,t')].
=1,

r, — vy f(yY)R(y+e,x') —
e 3 W) +Q [ S
Thus, in the small vicinitye of t we have an integral of a 0 1+Q' ¢(y,e)
rapidly changing function R'(t,t’), and therefore . )
U g4 ’ ’ ’ " T _ 1d
JU=dt I )A)R! (1)~ A(1) Imarkph(t—5.5), where f(y)exp[ _(le_w+ 1 <p(y)) / (2023)}
. t _ tp dy
Jmax IS the maximum value of the power density of the ex- (30
citing radiation and we introduced the normalized pulse According to the method of Ref. 44 the solution of the
shapef (t) =J()/ Imax- _ _ last equation is written in the form of the Chebyshev series:
Let us pass to the dimensionless variabtet/t,. Then N_1
we can transform Eq17) in the following way: — Co 2
My)=5+2 oTigy-1], (3D)
_ (v FXDR'(y+ex) — . -
A(y)+Q’ | dx — A(x") where cq,c; (i=1,2,. ._.,N—l) are the Chebyshev coeffi-
° 1+Q'¢(y.e) cients for the functiorM (y), T; are the Chebyshev polyno-
— 2 mials andy<b (the magnitudeyt,=bt, corresponds to the
exd —| woi— w+ i de(y) (20759) time moment of the completion of pulse actioThen the
2 t, dy 2 population of the excited electronic statg(t) [see Eq(20)]
= — ' (28 can be presented in the following form:
1+Q'¢(y.e)

~ Ny(t) = nz(ti)

where we denote'=o0,(w1)Imadp, £=¢/t, and y=x
—g. The functions of the argument with an upper line Q’ bc,
denote the corresponding function with no upper line of the 2 [C°X+ T[TZ(Z)_ 1]
argumentxt,, for example:A(x)=A(xt,) and so on. N—1

The last integral equation is a nonsingular one. There- b3S ¢
fore, it can be solved by the method of Ref. 44, where an &, K
approximation to the solution of an integral equation is found
in the form of anN term Chebyshev series.

Let us calculate the functioa(y,s). In the small vicin-
ity e of x the functionR’(x,x") can be presented in the

T+1(2) Tk-a(2) N (—1)k*?
2(k+1) 2(k—-1) k®-1

|

(32
wherez=(2/b)x—1. In particular, fort=bt, we obtain
k<(N-1)/2 c

1

c
following form: na(bt,)=Q'b ?o_ gl 4k+ﬁ (33
— 1
R'(xx)~—= 2 exp(—A%), IV. RESULTS AND DISCUSSIONS
2¢ 1522
Let us study the influence of the chirp rate on the excited
where state populatiom, after the completion of a pulse action.
d2p \2 The calculation results, obtained by E3) for a Gaussian
o(t) ~ w1t §jpwst— Gz T pulse of the shape

E=(t—t")rs, A=

40'23

1
=i [ =7 —=(82—ip)t?
Using the last equations and EQ7), we obtain E()=2(hexpie(t) =" exp{ 2(5 Lt } (39



4528 J. Chem. Phys., Vol. 109, No. 11, 15 September 1998 B. D. Fainberg

n “20 -15 -10 -05 0 05 10
2 (W-wW2) /Wy

00000 ~
oM p o @O

Absorplion/ Emission|

FIG. 4. Populating the electronic term 2 from “moving photonic replica-
tion” 1’ in the case ofnegative chirp which is fast(@) and slow(b) with
respect to vibrational relaxation.

2, leaving behind the “population tail'(see Fig. 4a)). This
is due to the fact that the electronic transition occurs at the
~ptp/wst intersection of the terms. For the same reason, a reverse tran-
sition from 2 to 1 is hindered. Thus, increasing,| will
FIG. 2. The excited state population after the completion of the pulse — tay/0r t9 populating the excited electronic state 2, and there-
action as a function of the linear chirp ratefor different initial detunings fore one can see clearly defined minima for small values of
(w—wy)/ ws;=1(1),0(2),~0.8(3)0.5(4),— 0.5(5). Other parameters are ] ) . b2 )
fiwg/(2ksT) =2.834,Q" = 0a(@2) Imandy=2.5, 7s/t,=2. Insets to Figs. 2 the chirp rateu (curves 1 and 2 in Fig.)3A similar discus-
and 5: Equilibrium spectra of the absorptiof)(and the emissionH); the sion can be provided for “photonic replication’™ 2and elec-
arrows show the relative positions of the initial excitation frequeacy tronic term 1, with the only difference that the “population
tail” occurs in “photonic replication” 2.
_ ) _ If the vibrational relaxation time is fastr{<t;), the
as a function of the linear chirp raj( (de/dt)=put) are  gpane of the population distribution in state 2 will not depend
shown in Figs. 2 and 3. Figure 2 shows a strong dependencg, he chirp rate and will be close to the equilibrium distri-
of the shape of the_ .CUI'VBZ(,U,) on the mmql detuningd 1 tion (see Fig. 4b)).
= w—wy Of the exciting pulse frequenay with respect to It is also worth noting that the excited state populations
the frequency of Franck—Condon transitiep,. n, for fast vibrational relaxatioricurves 3 and 4 of Fig.)3
Figure 3 illustrates the influence of the vibrational relax- 5.4 larger than those corresponding to the values,bft
ation time 7, on the dependence,(x). One can see that (curves 1 and 2 P
curves 1 and 2, corresponding to the valuesrgfwhich Curves 5 and 1 of Figs. 2 and 3, respectively, are like the
exceed the pulse duratidp (7s>tp), have clearly defined oy erimental data by Shamk al 2 (Fig. 5(b)). However, the
minima for small values of the chirp raje as opposed 10 ¢ res can not be directly linked to these data because the
curves 3 and 4 corresponding to fast vibrational relaxat'orbarameter— ut,lwg, is proportional to parameted” (),
(7s<tp). This fact can bg explain.ed as follows. Let us sup-qeq by ShanIE, only for small chirp ratésee below The
pose thatr>t,. Then if the chirp ratelu| rather large, ,oint s that Shanlet al. obtained chirped pulses by chang-
“photonic replication” 1" moving vertically up or dowride-  jng the separation of pulse compression gratings. In the last
pending on the chirp signwill populate the electronic term .o parameters and 4 are no longer independent param-

eters of a chirped pulse. They are coupled by the formtilas

06 n -
I Ty N 8%=2{ 150+ [20" (@) 70} Y, (35
o5k .‘.... ":. w= —4CI)"((1))[7'30+4(I)"2((1))]71, (36)
i ] where 7, determines the duration of a transform limited
04k L 3 . pulse, andd”(w)=®"(v)/(47?) is the phase terr?
™ * Figure 5a) shows the calculation results of the excited
c

state populatiom, as a function of®”(v) for the value of

the parameter,,=11 fs used by Shankt al. The quantity

0, IS evaluated from the absorption spectrum of LD690 in

methanol‘?lﬁsw 546 cmt. It gives a value of wg

| 1 | | =ho,sl(kgT)~1420 cm! for the Stokes shift of the equi-

-2.0 -1.0 0 1.0 librium absorption and luminescence spectra in the frame-
-ptp/wet work of a used model. The calculated dependences

_ , _ n,(®"(v)) are confined to the values of an argument
FIG. 3. The excited state population; after the completion of the pulse

) . .
action as a function of the linear chirp ratefor different times of vibra- |(I) (V)|>1QOOO f§, Sm(,:e our ,theory ,IS correct iny .fOI’

tional relaxation. 7 /t,=2(1,2) and 0.8,4); (- w;)lwe= —0.5(1,3) pulse durations exceeding the irreversible dephasing time of
and 0.52,4). Other parameters are identical to those of Fig. 2. the electronic transition. One can see that curve 1 which
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B 0.15n4 fiws/(2kgT)=3.38, Q'=0,(w)Imatp=2.5, 7s/tp=1, uty/wg
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-6.0 -20 0O 2'0' G.O %104 using positively chirped ®”=10"fs?) and negatively chirped %"
. [ . ! o >
b) ®" (v )in fs2 10* fs?) pulses(Ref. 13.

FIG. 5. The excited state population} after the completion of the pulse . - Y .
action as a function ob”() for low- and high-power excitatior(@ Cal-  duent time moments when the pulse is “red,” the excited

culation results for initial detunings  o(—w,)/wg  State has been already occupied and its depopulating is hin-

=-0.2(1,5),§2),0.5(3),~0.5(4); other parameters ardiws/(2KgT) dered. Therefore, the created situation is favorable to the

=3.38, Q'=04(w21) Imatp=2.5(1-4) and 0.); (b) Experimental data :
for the laser dyes LD690 in methanol and LDS750 in acetonitRlef. 13. gain of the red edge of the NC pU|Se'

V. CONCLUSION

corresponds to the experimental value of the initial detuning In this work we have developed a nonperturbative ana-
(w—wy)/wg;=—0.2 for LD690 in methanol, is much like lytic approach to the problem of the interaction of high-

the corresponding experimental dékg. 5b)). power chirped ultrashort pulses with a molecular system
For low pulse energysee curve b n, weakly depends coupled with a dissipative environment. We considered the
on the chirp rate according to the experiméht. model of the Gaussian—Markovian stochastic modulation of

Figures §a) and &b) depict the absorption spectrum un- the optical transition of a molecule in solution which had
der high-power excitation which is determined by the quan-been used for the description of a non-Markovian relaxation
tity A [see Eq(23)], calculated by the solution of an integral behavior in a number of ultrafast optical experimefits?
equation(28), for positively chirpedPC) (1 <0) and nega- The theory is correct for condition$) when the variation of
tively chirped(NC) (u>0) pulses. Calculation resul{fig.  a pulse frequency during the irreversible dephasing fithe
6(a)) for small initial detuning — w,;)/ws;, close to ex- of an optical transition must be smaller than the broadening
perimental condition$® qualitatively agree with the experi- of the transition due to the irreversible dephasing processes.
ment by Shanlet al. (Fig. 6(c)). Figures 6a) and 6b) show  This condition is usually fulfilled for pulse$35) used in
also a strong dependence of the absorption spectrum on tlexperiment® for moderate and large chirp rates. The devel-
initial detunings @ — w,1)/ ws;. oped approach also holds for pulse intensities such that

The NC pulse data show the gainegative absorption  o,(w1) Imax<(T') 11518
of the red edge of the NC pulse which is in an agreement The theory reduces the calculation of the absorption
with the experiment® The last effect can be also explained (emission and populations of molecules in solution on high-
by the picture of moving “photonic replications.” For the power chirped ultrashort pulse excitation to the solution of
NC pulse, the effective populating of the excited state occurshe integral equation for quantiti(t) [see Eq.(17)]. The
at the initial time moment when the pulse is “blu¢see Fig. calculation results agree qualitatively with the experimental
4 and the corresponding discussion abov the subse- results by Shanlkt all3



4530 J. Chem. Phys., Vol. 109, No. 11, 15 September 1998 B. D. Fainberg

The theory naturally leads us to the picture of “moving” the form of the integral equation with a kernel which de-
potentials[Eqg. (11)] which are “photonic replications” of pends only on the difference of the time arguments:
the ground and excited electronic states. An electronic opti-
cal transition induced by chirped pulses, can be considered At =exd —(
as an electron transfer reaction between a “moving photonic t
replication” and the corresponding term occurring at their —Ua(wn)Jf dt'A(t")R'(t—t") (A1)
instantaneous intersection. Changing the position of this in- 0
stantaneous intersection can occur even faster than the prgy timest<t,. The last equation can be solved with the aid

cesses of vibrational relaxation in interacting potentidls-  of the Laplace transformation. For the Laplace-transform of
scribed as the diffusion with respect to the energetiche magnitude(t) we obtain

coordinate. This clear picture explains not only the main

features of the behavior of the excited state population as a A(p)=ex{ — (wx— )%/ (20,5)]/

function of the chirp rate,(w), but fine details of it as well -

(see Sec. 1. We believe that the picture of “moving pho- {P[1+oa(w2) IR (P)1}, (A2)

tonic replications” will be useful also for a qualitative de- ~ ~,
scription of the interaction of chirped high-power uItrashortWhere,A(p) andR (p) are the Laplgce—transforms ar (1)
tand R’(t), respectively. The magnitudk(t) can be found

pulses with molecular systems for models different from tha ; ~

of the Gaussian—Markovian stochastic modulation. as an inverse Laplace-transform &(p).
The theory predicts a strong dependence of both the

shape of the functiom,(®"”(v)) and the absorption spec-

trum under high-power excitation on the initial detunidg APPENDIX B: FOUR-PHOTON APPROXIMATION
= w— w5,y Of the exciting pulse frequency with respect to

Wo1— w)2/(2023)]

the frequency of Franck—Condon transition; [see Fig. Let us consider the problem under investigation in the
5(a) and Figs. 6a) and @b)] which can be checked experi- four-photon approximation. The latter will enable us to ob-
mentally. tain a more detailed criterion of the correctness of our ap-

Finally, we will make some comments concerning theproach.
possibility of the quantum mechanical treatment of the low-  The electromagnetic fiel®) induces an optical polar-
frequency vibrational degrees of freedom of the system irization in the mediun®(r,t) which can be expanded in pow-
the problem under consideration. One can not obtain a closegrs of E(t).*® For cubic polarization of the system under
equ:lgon for the population difference like H@7) in the last  investigation, we obtain
case.” Therefore, we have proposed the construction of the
Padeapproximants for obtaipnin% a nonperturbative solution PEI(t) =P (1) + c.c=N Trr(Diapy (1) +c.C., (BL)

corresponding to the quantum treatment of vibrations, in thgyhere p(® is the density matrix of the system calculated in
case of intense ultrashort pulses without phase modul&tion.ine third approximation with respect &(t).

Using such an approach in the case of chirped pulses calls Tpe equation for the density matrix of the system can be
for further investigation. written in the form

ACKNOWLEDGMENTS p=—i(Lo+Ly)p, (B2
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When D,, does not depend on the nuclear coordinates
(the Condon approximatignthe amplitude of the positive
frequency component of the cubic polarizatié®* (t)

Let us consider the excitation of the system with a rect{P®)* (r,t)=P®)* (t)exp(—iwt)) is given by the
angular pulse with no phase modulation. Then @d) takes  formula>26:3247

APPENDIX A: RECTANGULAR PULSE WITH NO
PHASE MODULATION

(3)+ —iND* ” : -1
P (t):W . d7d7d7s exp{—[i(wpy— @)+ y]T =Ty "7~ y73}

Xexfi(wy—w)73]F (7,72, 73) E(t— 71— 7)) E* (t— 71— 7p— 73)

+exfd —i(wy— w) m3]F (71,72, T3) E(t— 71— 7p— 73) EX (t— 71— 7)) JE(t— 7), (B3)
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where for simplicity we dropped all vector indicef
=|D|, T;=(2y,) =(27y) lis the lifetime of the excited
state 2. The functionB, (7, ,7,,73) are sums of four-time

correlations functions corresponding to the four-photon char-

acter of light-matter interaction:

F1(71,72,73)=K(0,73, 71+ 7o+ 73,7+ 73)

+K(0,7'2+ 7'3,7'1+ 72+ 7'3,7'3), (B4)
Fo(71,72,73) =K* (0,753, 75+ 73,71+ 7o+ 73)
+K*(0,Tl+ 7'2+ 7'3,7'2+ T3,T3), (BS)

where
K(Oty,tp,t3)= (exp(i\Tvztl/h)exp(iwl(tz—tl)/ﬁ)

X exp(iW,(tg—ty)/f)exp( —iWitg/h))4,
(B6)
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F O2s. 2, o
G (7'1172,73):—7[71+73+27173(R35(72)

+i Im S(7,))], (B11)

g(7,)=dg/dr,. In the classical case, the term2 Im g(,)
=ws[1—Yr,)] describes the dynamical Stokes sffft°

As a consequence of conditid8), times7; and 75 [see
Eq. (B3)] become fast®~2%34Therefore, we can use Egs.
(B9), (B10), and(B11) and integrate the right-hand side of
Eq. (B3) with respect to them if the exciting pulses are
Gaussian with the linear chifigsee Eq(34)]. This integration
is possible only if one can ignore changing the complex field
amplitudeE(t) in a time~ o,.2.% As a result, Eq(B3) is
strongly simplified:

1 o
PO (=7 fo d7ox' V(0= put,t, ) E(D|E(t— )2,
(B12)

are the four-time correlation functions which were intro- Wherex®)(o— ut,t,7,) is the cubic susceptibility. It can be

duced in four-photon spectroscopy by Mukarffed? W,
=W,—(W,—W,), is the adiabatic Hamiltonian in the ex-

cited state without the reservoir addition to the frequency of  x®(w— ut,t,7,)= 21 XV (w—ptt, 7)),
=

the Franck—Condon transitigthe term(W,—W,),).
If the magnitudeu, =W, —W,;—(W,—W,), is a Gauss-

represented as a sum of two terms:
2
(B13)

where indexj shows that the corresponding quantities are

ian one (intermolecular nonspecific interactions, linear related to the nonequilibrium processes in the absorption (

electronic—vibrational coupling, ej¢cand also in the case of

a weak electronic—vibrational coupling, irrespective of the
nature ofu,, the four-time correlation functions can be rep-

resented in the forAi324°

K(Oty,tp,t3) =exdg(ts—ty) +9(ty) +9(t.—ty)
—g(ty) —g(tz—ty)+9(ty)], (B7)

where

t
g(t)=—h*zfodt%t—t')Kl(t’) (B8)

— 2
is the logarithm of the characteristic function of the spectrum ~ W(Z) =€xp(—Z%)
of single-photon absorption after substraction of a term

which is linear with respect té and determines the first
moment of the spectruniK(t) =(u;(0)uy(t)) is the corre-
lation function ofuy .

Because of the inequalityg) in the case under consider-

ation, there is a large parameter in the exponents in(Eg.

This makes it possible to limit the expansion of these expo-_

nents to power series at the extremum points ;=0 with
an accuracy up to the second order terms with respeef to

and T3 25-28,31,34,36,50
K(O,T3 y Tl+ T2+ T3, T2+ 7'3)

K*(O,T3,7'2+T3,7'1+7'2+T3) :eXF‘[G (7-117-2!7-3)]1 (Bg)

K(0,72+T3,T1+72+T3,T3) .
=exd —i27; Im
K*(0,7y+ 7,4 75,75+ 73, 73) 1 71 Im 9(72)

+GI(T:|_,7'2,T3)], (BlO)

where

=1) or emission [=2).
The contributions{¥)(w— ut,t,7,) to the cubic suscep-
tibility (B13) can be written in the form

X V(= pt,t, 7)) = —iD*2m) Y2NA 3 exp(— 7,/T,)
X (0" (1) V(0 — nt)w(z)).
(B14)

Here FS(w—ut)=(270o,s) Y2 exd — (0— ut—wy)?/
(2044)] is the equilibrium absorption spectrum of the system
under consideration at the frequeney- ut,

1+(2i/\/;)JZ exqtz)dt}
0

is the error function of the complex argumént,
2j={i 67 72(2+S(75)) —t(3+S(7)) ]+ w— ut
—oj(tt=m)}(20' ()", (B15)

where w(t,t—7,) is determined by Eq(19) for de(t)/dt
= ut, and the normalized correlation functi®{ir,) is arbi-
trary and does not need to be exponential.

Equations(B14), (B15) and (B16) (see below can be
considered as the generalization of the th&bfgr the case
of chirped pulses. The termvg(z;) on the right-hand side of
Eq. (B14) describe contributions to the cubic polarizations of
the nonequilibrium absorption and emission processes, re-
spectively. The first term on the right-hand side of Eg{L5)
which is proportional tos?~1/2, takes into account the
contribution of the electronic transition cohererie@ne can
ignore this term for pulses longer than the irreversible
dephasing time of the electronic transitiagsT’,%°
The quantity
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2 .
o' (Tp) =026 1= S(1p) + 0_[252+(52+|M)5(72)]]
2s
(B16)

7
is the time-dependent central second moment of the change:{i

related to nonequilibrium processes in the absorptraie)
and the emissiorispike spectra. It is the generalization of
the quantityo(7,) used before and differ from that by the

third term in the square brackets on the right-hand side of,
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