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A simple and physically clear approach to the interaction of intense chirped pulses with large molecules in
solutions is developed: time-dependent rate equations for integral populations of electronic molecular states.
For weak interaction, the time-dependent transition rates have a form of the Marcus electron-transfer rate.
For larger interactions, the transition rates take into account the saturation effect similar to the transition rates
in the solvent-controlled theory of electron-transfer reactions. The developed theory is a good approximation
to a more sophisticated treatment (J. Chem. Phys. 1998, 109, 4523) which reproduces the effects observed in
recent chirped pulse experiments.

I. Introduction

The possibility of controlling molecular dynamics using
properly tailored pulses has been the subject of intensive studies
in the past few years.1-19 Ultrashort pulses intrinsically consist
of a broad range of frequency components. The relative phase
of these frequency components can be systematically changed
by introducing positive or negative linear chirp. Chirped pulses
can selectively excite coherent wave packet motion either on
the ground electronic potential energy surface of a molecule or
on the excited electronic potential energy surface. In particular,
a negatively chirped (NC) pulse creates a nonstationary ground-
state component, while a positively chirped (PC) pulse dis-
criminates against it.14,17 This property of chirped pulses is
essentially enhanced by going beyond the perturbative regime
due to the multiphoton processes of exciting molecules.14,20

The effects of varying the chirp and intensity of an ultrashort
pulse exciting dye molecules in liquid solutions have been
investigated experimentally by Cerullo, Bardeen, and Shank,
et al.,14 Bardeen and Wilson, et al.,20 and Huppert et al.21 This
work is devoted to the analysis of such chirped experiments.

The interaction of strong radiation (and especially intense
chirped pulses) with large molecules in solutions is rather com-
plex problem. This problem involves two types of nonpertur-
bative interactions: light-matter and relaxation (non-Markovian)
ones.22,23Therefore, the majority of nonperturbative light-matter
descriptions was carried out by numerical solving the corre-
sponding sets of equations for molecular systems noncou-
pled4,14,17,24,25and coupled26,27 with a dissipative environment.

However, the ligh-matter interaction for large molecules in
solutions is characterized by fast electronic dephasing.28 It allows
us to simplify the problem by considering only the equations
for density matrix elements diagonal with respect to electronic
indices.22,23,29It is worthy to note that in spite of the fast elec-
tronic dephasing approximation, such an approach does take
into account vibrational coherences within both the ground and
excited electronic states. A similar approach to the spectroscopy
of H-bonds in a strong infrared field has been proposed by
Burshtein et al.30-32

In essence, approach22,23,29for strong pulse interaction with
large molecules in solutions is closely related to the theory of

electron-transfer reactions under strong interaction (solvent-
controlled limit).33-36 Really, one can consider an electronic
optical transition as an electron-transfer reaction between
“photonic replication” 1′ of the ground electronic state 1 and
the excited electronic state 2 (or between state 1 and “photonic
replication” 2′ of state 2) induced by interaction with electro-
magnetic radiation of frequencyω22,23 (see Figure 1)

For chirped pulse excitation the field amplitude can be
represented in the form:

whereE(t) andæ(t) are real functions of time, andæ(t) describes
the change of the pulse phase in a timet. In this case, the
“photonic replications” move vertically due to the variation of
the pulse frequencyω(t) ) ω - dæ/dt with the time. In the last
case an electronic optical transition can be considered as an
electron-transfer reaction between a “moving photonic replica-
tion” and the corresponding term occurring at their instantaneous
intersection.29 The problem is reduced to the solution of the
integral equation for the difference of vibrationally nonequlib-
rium populations in the ground 1 and excited 2 electronic states
(see eq 7 below).

However, the electron transfer for strong interaction (solvent-
controlled limit) can be described by the rate equations for
integralpopulations of electronic states if the activation energies
EA are large.33,35,36 It would be interesting to study such a
possibility also for optical transitions excited by strong chirped
pulses because just the integral excited-state population is
measured in experiments on the integrated fluorescence.14,20In
addition, the rate equations are simpler than the integral
equation.37 This is a nontrivial problem for the excitation by
chirped pulses because the activation energy is changed during
the pulse action (“moving” potentials).

Really, according to Marcus theory of the (free) energy gap
(∆E) law for the electron-transfer reactions:33,36,38,39k ) A exp-
(-âEA), whereEA ) (Er - ∆E)2/4Er andEr are the activation
and the solvent reorganization energy, respectively,â ) 1/kBT.
In the photon replica picture,23,29,40,41the frequency detuning
p∆ω(t) ≡ p[ω(t) - ω21

el ] (between instantaneous pulse fre-
quency and the frequency of pure electronic transition 1f 2)
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E(t) ) 1
2
EB(t) exp(-iωt) + c.c. (1)

EB(t) ) EB(t) exp(iæ(t)) (2)
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and the half a Stokes shiftpωst/2 play the roles of∆E andEr,
respectively, for the optical transitions in the field of strong
chirped pulses, i.e.,∆E(t) ) p[ω(t) - ω21

el ], Er ) pωst/2 (see
Figure 1). Therefore, one can realize all the Marcus regions in
one experiment with chirped pulses: the “normal region” when
∆ω(t) < ωst/2, the “activationless region” when∆ω(t) ) ωst/2
and the “inverted region” when∆ω(t) > ωst/2 (see Figure 2).
Interactions with phase modulated pulses can be used to check
the Marcus “free energy gap” law and the theories of the solvent-
controlled reactions.33,36,39

In this work, we obtain time-dependent rate equations for
integral populations of electronic states of a large molecule in
a solution excited with a strong chirped pulse. Our approach is
different from time-dependent rate equations, developed by
Bardeen et al.42 A short comparison of their approach with ours
is given in Appendix A. The outline of the paper is as follows.
In section II, we obtain rate equations for integral populations
of electronic states and calculate time-dependent transition rates.

In section III, we obtain an expression for the absorption
spectrum of intense phase modulated pulses, using the developed
approximation. In section IV, we summarize our results. In the
Appendices, we confront our approach with others and check
our results by comparing them with those corresponding to long
time limit for rectangular pulses without chirp.

II. Rate Equations for Integral Populations of Electronic
States

Let us consider a molecule with two electronic statesn ) 1
and 2 in a solvent described by the Hamiltonian

whereE2 > E1, En is the energy of staten, Wn(Q) is the adiabatic
Hamiltonian of reservoirR (the vibrational subsystems of a
molecule and a solvent interacting with the two-level electron
system under consideration in staten). The molecule is affected
by electromagnetic radiation of a chirped pulse presented by
eqs 1 and 2.

The influence of the vibrational subsystems of a molecule
and a solvent on the electronic transition within the range of
definite vibronic transition 0f k related to high frequency
optically active (OA) vibration (≈1000-1500 cm-1) can be
described as a modulation of this transition by low frequency
(LF) OA vibrations{ωs}.43-46 We suppose thatpωs , kBT.
Thus {ωs} is an almost classical system. In accordance with
the Franck-Condon principle, an optical electronic transition
takes place at a fixed nuclear configuration. Therefore, the
quantityV(Q) ) W2(Q) - W1(Q) is the disturbance of nuclear
motion under electronic transition. A reduced description is
convenient to use, taking into consideration only a partial set
of coordinates related to optically active modes which give a
contribution toV. The effect of the remaining modes can be
introduced through a random force and friction in the Langevin
equation.47 Considering damping as a random perturbation by
the diffusional Markovian process in the configuration coordi-
nate spaceq, the equations for the diagonal elements of the
density matrix of the system under consideration can be written
in the form:29,40,48,49

wheren ) 1, 2; D is the dipole moment operator of a solute
molecule,V′(qi) ≡ dV(q)/dq|q)qi, andqi(x) are the solutions of
the equation

The quantitiesqi(x) are the intersections of the moving “photonic
replications” with the corresponding terms,29 ω21

el ) (E2 - E1)/
p. In eq 4,Fnn

(0)(q) is the nonperturbated density matrix, andGnc-
(q,t - x;qi(x)) is the Green function describing diffusion in
harmonic potentialsUn(q) ) En + 1/2ω̃2(q - δn2d)2, δn2 is the
Kronecker delta. For such potentialsV(q) ) Er - ω̃2dq.

The normalized populations of the electronic states can be
obtained by integration ofFnn(q,t) over q:

wheren1 + n2 ) 1.

Figure 1. Effective potentials corresponding to electronic states 1 and
2 and their “photonic replications”.

Figure 2. “Normal” (a) and “inverted” (b) regions for interactions
with chirped pulses.

H0 ) ∑
n)1

2

|n〉[En + Wn(Q)] 〈n| (3)

Fnn(q,t) ) Fnn
(0)(q) + (-1)n

π

2p2
∫0

t
dx|DE (x)|2p ∑

i

|V′[qi(x)]|-1

× Gnc(q,t - x;qi(x))[F11(qi(x),x) - F22(qi(x),x)] (4)

∆E(x) - V(q) ) 0 (5)

nj(t) ) ∫Fjj(q,t) dq (6)
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We can obtain an integral equation for the nonequilibrium
population difference corresponding to the coordinateqi(t) )
-(ω̃2d)-1[∆E(t) - Er]:29,40

where∆(t) ) pω̃-2d-1 x2πσ2s[F11(qi(t),t) - F22(qi(t),t)], σa-
(ω21) is the cross section at the maximum of the absorption
band (ω21 ) ω21

el + ωst/2), J(t) is the power density of the
exciting radiation, and the quantity

describes the contributions from induced absorption (j ) 1) and
induced emission (j ) 2) to ∆(t). HereS(t) ) exp(-|t|/τs) is
the normalized correlation function of a Markovian process
corresponding to diffusion in electronic states 1 and 2,σ2s is
the contribution of the low frequency optically active vibrations
to a second central moment of the equilibrium absorption
spectrum,EA1,2

1/2 (t) ) [∆E(t) - Er]/(2Er
1/2), EAj(t) is the activa-

tion energy in electronic statej. The quantity∆(t) enables us
to calculate the populations of electronic statesnj(t)29

For t - t ′ f ∞ the quantityR′(t,t ′) on the right-hand side of
eq 7 relaxes to the value

Therefore, a new quantity is conveniently introduced

which relaxes to zero fort - t ′ f ∞. Then the integral on the
right-hand side of eq 7 can be written in the form:

In the vicinity of the pointt ′ ) t, the quantityR′(t,t ′) displays
the δ-shaped behavior.29 In addition, one can see from eqs 8
and 11 that for the activation energiesEA1,2 . kBT, the quantity
r(t,t ′) is a rapidly changing function oft - t ′. Therefore,

and we obtain from eqs 9, 7, 12, and 13 time-dependent rate
equations for the integral populations of electronic states

where

The quantity W12
NA(t) ) σa(ω21) J(t) exp[-âEA1(t)] is the

probability of the “nonadiabatic” transition. It is equal toW12-
(t) for small pulse intensities.W12

NA(t) can be considered as a
time-dependent form of the Marcus electron-transfer rate.38 The
second term in the denominator of eq 15 describes the saturation
effect.

Figure 3 shows a good fit of the solutions of eqs 14, 15, and
16 (curves 1) to those of integral eq 7 in combination with eq
9 (curves 4) which describe recent chirped pulse experi-
ments.29,40 Curves 4 were calculated in the same approach as
those of Figure 5 of ref 29.

The calculation results were obtained for a Gaussian pulse
of the shape

Experimentally, chirped pulses are obtained by changing the
separation of pulse compression gratings. In the last case the
parametersδ andµ are determined by the formulas:14,29

whereτp0 ) tp0/x2ln2 determines the duration of a transform
limited pulsetp0, andΦ′′(ω) ) Φ′′(ν)/(4π2) is the phase term.

Calculation of Time-Dependent Probability of Electronic
Transition. Let us evaluate the integral on the right-hand side
of eq 15. We will consider pulses with linear chirp: dæ/dt )
µ(t - t0)29

which include a pulse of the form (17) as a special case. Since
the quantityR′(t,t ′) is a rapidly changing function oft - t ′ for
large activation energiesEA1,2 . kBT, the main contribution to
it give the time intervals (t - t ′)/τs , 1. For such conditions50

Equation 20 enables us to strictly specify the criterion for
obtaining eqs 13, 14, 15, and 20. Since (t - t ′)/τs , 1, then
the activation energiesEAj (τs + t) must be much larger than
2kBT:

Using eqs 15 and 20 and integratingR′(t,t ′) with respect tot ′
between the limitst ′ ) 0 andt ′ ) t, we obtain

where erf(z) is the error function.51 Figure 3 shows the excited-
state populationn2 after the completion of pulse action as a
function of the phase term calculated by eqs 14, 16, 17, 18,

∆(t) ) exp[-âEA1(t)] - σa(ω21) ∫0

t
dt ′J(t ′)∆(t ′)R′(t,t ′)

(7)

R′(t,t′) ) [1 - S2(t - t′)]-1/2 ∑
j)1

2

exp{-â[EAj
1/2(t) - EAj

1/2(t′)

× S(t - t′)]2/[1 - S2(t - t′)]} (8)

nj(t) ) δ1j + (-1)jσa(ω21) ∫0

t
J(t′)∆(t′) dt′ (9)

R′(t) ) ∑
j)1

2

exp[-âEAj(t)] (10)

r(t,t′) ) R′(t,t′) - R′(t) (11)

∫0

t
dt ′J(t ′)∆(t ′)R′(t,t ′) ) R′(t)∫0

t
dt ′J(t ′)∆(t ′) +

∫0

t
dt ′J(t ′)∆(t ′)r(t,t ′) (12)

∫0

t
dt ′J(t ′)∆(t ′)r(t,t ′) ≈ J(t)∆(t) ∫0

t
dt ′r(t,t ′) (13)

dn1,2

dt
) ([W21(t)n2 - W12(t)n1] (14)

W12(t) ) W12
NA(t)/{1 + σa(ω21)J(t)[∫0

t
R′(t,t ′) dt ′ - tR′(t)]}

(15)

W21(t) ) W12(t) exp[-â∆E(t)] (16)

E(t) ) E0 exp[- 1
2
(δ2 - iµ)(t - t0)

2] (17)

δ2 ) 2{τp0
2 + [2Φ′′(ω)/τp0]

2}-1, µ ) -4Φ′′(ω) [τp0
4 +

4Φ′′2(ω)]-1 (18)

E(t) ≡ E(t) exp(iæ(t)) ) E(t) exp[12iµ(t - t0)
2] (19)

R′(t,t ′) ≈ x τs

2(t - t ′)
∑
j)1

2

exp[-
â(t - t ′)

2τs

EAj(t + τs)] (20)

âEAj(t + τs)/2 . 1 (21)

W12(t) )

W12
NA(t)

1 + σa(ω21)J(t)τs ∑
j)1

2 x π

âEAj(t+τs)
erf(x ât

2τs

EAj(t + τs))
(22)
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and 22 (curves 2). One can see that in general eq 22 can be
used for qualitative description of then2 dependence on the
phase term, and in a number of cases for the quantitative
description [see Figure 3, panels c and f, forΦ′′(ν) < 0 and
Figure 3d forΦ′′(ν) > 0].

We can present probabilityW12(t) in the form which is similar
to that of the electron-transfer reactions.33,36 Bearing in mind
that erfx(ât/2τsEAj(t+ts)) = 1 for conditions (21), we obtain

for the normal region (|∆E(τs + t)| < Er), and

for the inverted region (∆E(τs + t) > Er). Figure 3a shows a
satisfactory fit of the solution of eqs 14 with time-dependent
rates determined by eqs 16, 23, and 24 after interaction with
Gaussian pulses (17) and (18) to that of integral eq 7 in
combination with eq 9 for both the positive chirp and positive

detuning with respect to the carrier frequencyω. This fit is
essentially better for larger values of the Stokes shift (see Figure
3d) because in the last case it is easier to obey inequality (21).
For other detunings and negative chirp or no one from
inequalities|∆E(τs + t)| < Er and∆E(τs + t) > Er is fulfiled
during the pulse action, or fits are not good, and therefore they
are not shown in the figures.

Special Cases.1. Weak Interaction. |σa(ω21) J(t)∫0
t r(t,t ′)

dt ′| , 1. Then we have from eq 15

i.e., we arrive at the result of section IIIA of ref 29, which was
obtained for fast vibrational relaxation.

2. Strong Interaction.|σa(ω21) J(t)∫0
t r(t,t ′) dt ′| . 1. In this

situation, we obtain from eqs 15, 22, 23, and 24

Figure 3. The excited-state populationn2 after the completion of the pulse action as a function ofΦ′′(ν). n2 is calculated by the solution of eqs
14 and 16 using different approaches toW12(t): 1, eq 15; 2, eq 22; 3, eqs 23 and 24; 4, solution of eqs 7 and 9. The parameterpωst/(2kBT) ) 3.38
(parts a-c) is close to that of the laser dye LD690 in methanol,14 and equal to 6 for parts d-f. Other parameters are (ω - ω21)/ωst ) 0.5 (parts a
and d), 0 (parts b and e),-0.5 (parts c and f);σa(ω21) Jmaxtp ) 2.5,τp0 ) 11 fs. Insets to parts a-c and d-f: Equilibrium spectra of the absorption
(A) and the emission (E); the arrows show the relative positions of the carrier frequencyω.

W12(t) )

W12
NA(t)

1 + 4σa(ω21)J(t)τs xπ/(âEr) {1 - [∆E(τs + t)/Er]
2}-1

(23)

W12(t) )

W12
NA(t)

1 + 4σa(ω21)J(t)τs xπEr/â[∆E(τs + t)]-1{1 - [Er/∆E(τs + t)]2}-1

(24)

W12(t) ) W12
NA(t)

W12(t) ) [∫0

t
r(t,t ′) dt ′]-1 exp[-âEA1(t)] (25)

W12(t) )
exp[-âEA1(t)]

τs∑
j)1

2 x π

âEAj(t + τs)
erf(x ât

2τs

EAj(t + τs))
(26)
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respectively. One can consider eqs 25, 26, 27, and 28 as the
probabilities of light-induced “solvent-controlled” reactions for
saturation regime.

III. A Simple Formula for the Absorption Spectrum of
Intense Phase Modulated Pulses

Solving eq 14, one can also obtain the quantity∆(t), using
the relation29

The quantity∆(t) in its turn enables us to calculate the imaginary
part of the susceptibility

where N is the density of particles in the system. The
dependence ofImø(ω(t),t) on the instantaneous frequencyω(t)
describes the absorption spectrum of strongly chirped pulses
R(Ω) at a frequencyΩ when a pulse durationtp is much larger
than that of the corresponding transform-limited onetp0,52 i.e.,
R(Ω) ≈ ωImø(ω(t),t), whereω(t) ) Ω .

Using eqs 14, 15, 16, and 29, one can obtain the following
equation for the nonequilibrium population difference∆(t)
which, according to ref 52, determines the absorption spectrum
for strongly chirped pulses (see eq 30)

One can see from eq 31 that∆(t) < 0 (the absorption is
negative) if the expression in the curly brackets on the right-
hand side of this equation is negative (certainly, for the positive
denominator). The most benefit conditions for this are realized
for negative chirp when in the end of a pulse the value ofn2(t)
is moderately large and∆E(t) < 0. This conclusion conforms
with experimental results.14

It is worthy of note that the form of the expression in the
curly brackets on the right-hand side of eq 31 is similar to that
of the population difference corresponding to vibrational equi-
librium (weak interaction). However, it does take into account
vibrationally nonequilibrium processes which influence on the
integral populationsn1(t) andn2(t) (see section II).

IV. Conclusion

In this work, we have developed a simple and physically clear
approach to the interaction of intense chirped pulses with large
molecules in solutions: time-dependent rate equations for
integral populations of electronic molecular states. For weak
interaction, the time-dependent transition rates have a form of
the Marcus electron-transfer rate.38 For larger interactions, the
transition rates take into account the saturation effect similar to

the transition rates in the solvent-controlled theory of the
electron-transfer reactions.33,36,39

We have proposed three approaches to the calculation of time-
dependent transition rates: integral formula (eq 15), evaluation
of the integral formula with error function (“error function”
formula) (eq 22), and the normal and inverted region formulas
(eqs 23 and 24, respectively). Solution of the time-dependent
rate equations with the integral formula is a good approximation
to the solution of integral eq 7. The “error function” formula
(22) can be used in general for the qualitative description and
in some regions for quantitative description. Using the normal
and inverted region formulas (23) and (24) is limited for chirped
pulses, however, eqs 23 and 24 can be satisfactory approxima-
tions for both the positive chirp and positive detuning with
respect to the carrier frequencyω.

It is worthy of note that the time-dependent transition rates
differ from those of the solvent-controlled theory not only by
the time dependence of the transition rates and the activation
energies. The point is that the time-dependent activation energies
EAj which determine both the probability of the “nonadiabatic”
transition W12

NA(t) (EA1(t)) and the value of the saturation
parameter (EAj(t + τs)) formally relate to different instants of
time. What actually happens is that the dependenceEAj(t + τs)
reflects changing the position of the spike (“particle”) or hole
creation in electronic statej due to pulse chirp during the
vibrational relaxation timeτs.

The approach developed in this work can be extended to take
biphasic solute-solvent relaxation into account.

Acknowledgment. This work was supported by the Israel
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Appendix A: Time-Dependent Rate Equations by
Bardeen et al.

Bardeen et al.42 considered the four level system used in the
early days of the dye laser theory.53 In such a model, the
absorption and emission spectra correspond to different pairs
of levels. The vibrational relaxation is simulated with the
population relaxation rates between two ground-state levels and
between two excited-state levels. This model ignores all
coherences. The time-dependent probabilities of optical transi-
tions are determined by the absorption and luminescence spectra
in a weak field, and their shape does not depend on field
intensity.

By contrast, our rate equations describe theintegral popula-
tions of electronic states. They are based on the model of the
population wave packets diffusion with respect to the coordinate
q in harmonic potentials (see eqs 4, 7, and 8). A strong optical
field can distort the population wave packets shape, creating a
hole in the initial distribution near the intersection of “moving”
potentials. This effect is described by the saturation of the time-
dependent probabilities of optical transitions introduced in our
work. In other words, the field intensity influences on the
frequency dependence of the time-dependent probabilities.

Diffusion along the coordinate is related to the relaxation of
both energy and phase. Therefore, the time-dependent prob-
abilities of optical transitions have been obtained in our work
with taking into account both energetic and phase relaxation
within the ground and excited electronic states.

Appendix B: Rectangular Pulses without Phase
Modulation

Let us check our results by comparing them with those
corresponding to long time limit for rectangular pulses without

W12(t) ) 1

4τsxπ/(âEr)
{1 - [∆E(τs + t)/Er]

2} exp[-âEA1(t)]

(27)

W12(t) ) 1

4τsxπEr/â
∆E(τs + t){1 - [Er/∆E(τs + t)]2}

× exp[-âEA1(t)] (28)

∆(t) ) [J(t)σa(ω21)]
-1

dn2

dt
(29)

Imø(ω(t), t) )
N|D12|2

p x π
2σ2s

∆(t) (30)

∆(t) )
exp[-âEA1(t)]

1 + σa(ω21)J(t)[∫0

t
R′(t,t ′) dt ′ - tR′(t)]

{n1(t)

- n2(t) exp[-â∆E(t)]} (31)
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chirp. Burshtein et al.30 determined the stationary rates of light
absorption and emission via stationary populations:

whereT1 is the longitudinal relaxation time. For our case,T1

f ∞, and

It is clear that our probabilities trivially satisfy the last equations
due to relation (16) which expresses the detailed balance
principle. Therefore, we will consider also the long time kinetics
of approaching the stationaty state.

In the last case for the Laplace-transform of the magnitude
∆(t) during the pulse action (see eq 7), we obtain29

where∆̃(p) and R̃′(p) are the Laplace-transforms of∆(t) and
R′(t,t ′) ≡ R′(t - t ′), respectively, andR̃′(p) can be represented
as

G̃jj(ω21 - ω,ω21 - ω,p) are the Laplace-transform of the Green’s
functionsGjj(ω21 - ω, t;ω21 - ω, 0).29 The Green’s functions
Gjj(ω21 - ω, t;ω21 - ω, 0) result fromGjc(q,t;qi) (see eq 4) by
passing on to the variableR ) (ω̃2d/p)q and putting
R ) (ω̃2d/p)qi ) ω21 - ω.

To study a long time kinetics, we will expand the function
G̃jj(ω21 - ω,p;ω21 - ω) in a power series ofp:35

where

Using eqs 9, B1, B2, and B3, we obtain for the populations of
electronic states

where

It is clear that eqs B4 are the solution of the following
equations:

Equations B5 and B6 are a special case of eqs 14, 15, and 16.
In other words, the time dependent rates of the transitionsW12-
(t) andW21(t), introduced in our work, coincide with the time
independent rates in the limit of long times.
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