ISSN 0030-400X, Optics and Spectroscopy, 2013, Vol. 115, No. 3, pp. 406—419. © Pleiades Publishing, Ltd., 2013.
Original Russian Text © B.N. Levinsky, L.A. Nesterov, B.D. Fainberg, N.N. Rosanov, 2013, published in Optika i Spektroskopiya, 2013, Vol. 115, No. 3, pp. 464—479.

CONDENSED-MATTER

SPECTROSCOPY

Derivation of the Equation of Motion for Resonantly Excited

Molecular J Aggregates Taking into Account Multiparticle Effects

B. N. Levinsky“, L. A. Nesterov’, B. D. Fainberg®, and N. N. Rosanov?® ¢
¢ Holon Institute of Technology, 58102 Holon, Israel

b St. Petersburg National Research University of Information Technologies, Mechanics, and Optics,
St. Petersburg, 197101 Russia

¢ Vavilov State Optical Institute, St. Petersburg, 199034 Russia
4 Joffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia
e-mail: nrosanov@yahoo.com, fainberg@hit.ac.il
Received January 21, 2013

Abstract—We have analyzed a model of molecular J aggregates in the form of a chain of three-level mole-
cules. Equations of motion for these chains with taking into account multiparticle contributions caused by
different mechanisms by which molecules interact with each other (dipole—dipole interactions, exciton—
exciton annihilation, etc.) are presented. These contributions describe not only the interaction of any pair of
molecules with each other, but also the interaction of a given molecule simultaneously with two, three, or
more number of molecules. In the general case, it is necessary to take into account effects related to correla-
tions between such molecules. To take into account these correlation effects, it is necessary to derive equa-
tions of motion from the first principles. As a result, a hierarchy of mutually coupled equations for the expec-
tation values of the products of operators that refer to different molecules of the chain. In this work, we take
into account only two-particle correlations between molecules. This, in turn, has led us to the necessity of
taking into account equations for the two-particle expectation values with subsequent factorization of higher-
order averages to obtain a closed system of equations. Correct taking into account of the mechanism of exci-
ton—exciton annihilation from first principles has made it necessary to introduce multiparticle contributions
into equations of motion that describe the relaxation of the system due to this mechanism and that are absent
in a purely phenomenological consideration. By this means, we have obtained a set of equations that makes
it possible to successively and rigorously take into account two-particle correlations between molecules of J

aggregates.
DOI: 10.1134/50030400X13090142

1. INTRODUCTION

The objective of this work is to derive the equations
of motion for J aggregates with taking into account
multiparticle contributions caused by different mech-
anisms by which molecules interact with each other
(dipole—dipole interactions, exciton—exciton annihi-
lation, etc.). These contributions describe not only the
interaction of any pair of molecules between each
other, but also the interaction of a given molecule
simultaneously with two, three, and greater number of
molecules. In general case, it is necessary to take into
account correlation effects between such molecules.
In this work, we restrict our consideration by two-par-
ticle correlations related to above-indicated interac-
tions of molecules and, in particular, to two-exciton
excitations of the system. A set of equations refined in
this way will be further used to study the hysteresis and
to calculate and analyze characteristics of dissipative
solitons that arise in these structures under resonant
laser excitation. Previously, such solitons have been
revealed in [1] (see also [2]) upon modeling of J aggre-

gates by a chain of N three-level molecules [3], how-
ever, without taking into account multiparticle effects.

In this work, we will also use the model of the
J aggregate in the form of a chain of three-level mole-
cules. This model assumes that, upon interaction with
an external radiation field, a transition from the
ground to the second level of the molecule prevails. As
a rule, the remaining radiative transitions can be
neglected. It is also assumed that frequencies of tran-
sitions from the ground level of the molecule to the
second level and from the second to the third level are
rather close between each other.

If there are no radiative transitions from the first
and second levels to the third one, this latter level is
pumped as a result of direct transfer of excitation
from one molecule to another that is located in the
neighboring site of the chain. In this process, one of
the molecules that resides on the second excited level
interacts with another molecule in the same state,
gives its energy to this molecule, and returns to the
ground state, whereas the molecule that received the
energy passes to the third level. It is assumed that the
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third level is vibronic in its nature and decays very
rapidly transferring its energy to the second and first
levels.

It is a distinctive feature of J aggregates that they
possess a collective (exciton) mechanism of excitation
by external radiation. This manifests itself in the fact
that the chain molecules under consideration have
one-exciton states with energies close to the energy of
the second excited level and two-exciton states with
energies that are close to the energy of the third level.
As a result, the mechanism by which the excitation is
transferred between neighboring molecules leads to
annihilation of the two-exciton state, which interacts
with a vibronic level of the molecule of a close energy
that decays very rapidly. In terms of one-particle
description, the decay of the two-exciton state is rep-
resented as annihilation of two one-exciton excita-
tions (one of them is the excitation to the ground state,
while another is the deexcitation to a higher-lying
molecular state with a short lifetime) [3—5].

The existence of the collective mechanism of exci-
tation of J aggregates leads to large values of their lin-
ear and nonlinear responses with subpicosecond tran-
sient times. Therefore, these structures can be very
promising for use in information processing [6], as
well as in laser technologies [7]. In [8, 3], the effect of
bistability in an individual J aggregate upon its reso-
nant excitation by laser radiation has been predicted
and studied theoretically. This effect indicates that this
structure can be used in schemes of molecular mem-
ory. In [9], the possibility of formation of dispersive
optical solitons in linear molecular aggregates based
on two-level molecules was demonstrated for the first
time. These solitons are nanosized structures, which
are localized almost within the region of a single mol-
ecule, which opens up possibilities for creating sub-
miniature memory cells.

Usually, J aggregates are described using a semi-
classical approach, in which a chain of molecules is
described by a system of Bloch equations for one-
particle density matrices. In this case, the interaction
between molecules is derived based on the classical
expression for the retarding interaction between a
system of dipoles by which molecules are modeled.
In addition, the above-mentioned interaction that
leads to exciton—exciton annihilation is also intro-
duced into the system (usually phenomenologically).
As a rule, in the system of equations obtained in this
way, only two-particle interactions are taken into
account, which are presented in the factorized form,
i.e., without taking into account correlations
between molecules.

However, as we will show below, the system of
equations for J aggregates can also be derived from first
principles. In this case, a hierarchy of mutually cou-
pled equations for the expectation values of products
of operators that refer to different molecules of the
chain arises. This system contains expectation values
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beginning from one-particle and ending with N-parti-
cle expectation values (/N is the number of molecules
in the chain, and N > 1).

An important aspect of this problem is that the
third level of molecules is a system of a large number of
vibrational sublevels, interaction with which leads to
dissipation of energy and to irreversibility of the exci-
ton—exciton annihilation process. If this interaction is
correctly taken into account from the first principles,
the equations of motion will acquire a number of mul-
tiparticle contributions that describe the relaxation of
the system related to the exciton—exciton annihilation
but that, however, are absent in terms of the purely
phenomenological approach.

In this case, if we restrict ourselves to consider-
ation of the set of equations for only one-particle
averages and discard all the remaining ones, then
taking into account the interaction mentioned above
leads to the appearance in equations not only of
already known two-particle contributions, but also of
three-particle ones. By representing the expectation
values that correspond to these latter contributions in
the form of a product of one-particle averages, we
arrive at a refined system of Bloch equations, in
which the three-particle relaxation is also taken into
account. Analysis showed that, by virtue of particular
features of the considered system of molecules,
among obtained three-particle contributions, there
are contributions of the same order of magnitude as
that of the known two-particle contributions.

Finally, if in the initial hierarchical system of equa-
tions, we also take into account equations for two-par-
ticle averages, and all the remaining multiparticle
averages, we express via combinations of products of
one-particle and corresponding two-particle averages,
then we can take into account two-particle correla-
tions between molecules of the chain, which, among
other things, can also be related to two-exciton excita-
tions in this chain. This is precisely the final goal of our
derivation of the system of equations for the descrip-
tion of J aggregates.

In general case, taking into account the interac-
tion with a third level of molecules leads to the
appearance in equations of motion not only of three-
particle but also of four-particle relaxation terms. In
general, all these multiparticle relaxation terms have
the interference nature, which reflects the fact that a
transition to a given state can, as a rule, be realized
not by only one pathway, but, rather, by a combina-
tion of different pathways. A correct calculation of all
the multiparticle contributions mentioned above is
the most complicated and the most important part of
this work.

As was noted above, our work is devoted to the der-
ivation of equations of motion taking into account
two-particle correlations between molecules. In this
case, it is most difficult to calculate the above-men-
tioned multiparticle contributions caused by the exci-
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ton—exciton annihilation mechanism. Since calcula-
tion and the analysis of these contributions are a rather
complicated and independent problem, the derivation
of equations of motion is naturally divided into two
stages. At the first stage (Section 2), we investigate the
evolution of the system without taking into account
the exciton—exciton annihilation mechanism; as a
consequence, we do not take into consideration the
interaction with a third level of molecules. Therefore,
at this stage, the system is considered to be quasi-two-
level. At the next stage (Section 3), we take into
account only the mechanism of exciton—exciton
annihilation and calculate relaxation terms that
describe the evolution of the system under the influ-
ence of this mechanism alone. In other words, we
assume that, in Section 3, relaxation terms can be cal-
culated irrespective of the influence of all the other
processes [10]. Clearly, the total system of equations is
the sum of contributions from the second and third
sections of this work.

2. DERIVATION OF EQUATIONS OF MOTION
WITHOUT TAKING INTO ACCOUNT
THE MECHANISM OF EXCITON—EXCITON
ANNIHILATION

2. 1. Definitions for States of Molecules and Operators

Consider a linear chain that consists of N three-
level molecules. As was mentioned above, this chain
can be used to model J aggregates. We will assume that
the lowest state of each molecule is determined by the
state vector| g) or|1), and the energy of this state is E,.
Correspondingly, the second state will be determined
by the state vector |e) or|2) with energy E,. Finally, the
third state will be determined by the state vector | ) or

|3) with energy E;. It is clear that E5 > E, > E|.

For the energy levels, there is also another set of
designations, which will be used in the text—namely,
E =E,, E, = E,, and E; = E,. State vectors |mg),
|me), and |mf) will correspond to a molecule that is
located at site m of the chain. Using these vectors, we
can construct the following operators of creation and
annihilation for each molecule, which are projection
operators onto the corresponding states of the mole-
cule: B,, =|mg)(me| is the operator that describes the
annihilation of an excitation in molecule m at the level
“e” and its transition to the ground state |mg), and,

also, B, =|me)(mg| is the operator that describes the
creation of an excitation in molecule m to the level

[13 b2

e
According to the same principle, we will also define
the following operators: C,, = |mg)(mf|, C, =
|mf><mg|, D, = |me><mf ,and D, = |m )(me|.
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Let us also define the operators of the number of
molecules N, N,,,,and N, in states|mg), | me), and
|mf), respectively:

Noug = B,B,, = |mg)(me|me)(mg| = mg) (me,

N,, =B, B, = |me><mg|mg><me| = |me><me|,

Noy = CiCy = mf) | me) (mf | = |mf) (.
Nyg+ Nyt Ny =1,

It is clear that all operators that refer to different
molecules commute with each other. Concerning def-
initions and notation, see also [11, 12].

o))

2.2. The Total Hamiltonian of the System

The total Hamiltonian of the system is combined
from the Hamiltonian of free molecules and the
Hamiltonians of the interaction of molecules with an
external field and with each other. In particular, this
Hamiltonian also involves the interaction that leads to
the exciton—exciton annihilation.

The Hamiltonian of free molecules has the form

1
Hfree = E{Z[Emg(BmB; + CmC;)
" ()
+ E,o(ByB,, + D, D) + E,.;(CiC, + D,;Dm)]}.

The Hamiltonian of the interaction with an exter-

nal electromagnetic field with frequency v,, can be
represented as

Ha(r) = —%Z(plzel)[B,;El exp(—ivy) + Hec.]. (3)

Here, the external field is defined by the formula E =
[e E, exp(—iv,,t) + c.c]/2, while Hamiltonian (3) itself
represents the interaction of this field with the polar-
ization vector P of the system of molecules: H,, (f) =
—PE. This interaction is taken into account in the

rotation field approximation. In this case, p,lz is the
dipole moment of the molecule for transition 1 — 2.

The interaction between molecules includes the
dipole—dipole interaction and the interaction via a
transverse radiation field of molecules. For the Hamil-
tonian that describes the former of these interactions
(dipole—dipole), the following expression can be
obtained [8, 11—14]:

1 gege p+ gege* p+
H, == Jon BuB, +J,, B,B,). 4)
: 2§< ) (
The first term in (4) describes the annihilation of
the state |e) of molecule » and the creation of the state
|e) for molecule m, and the second term describes a

similar effect but with the replacement of » by m and
vice versa.
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The interaction between molecules via the trans-
verse radiation field will be taken into account later
directly in equations of motion. Finally, concerning
the interaction Hamiltonian that leads to the exciton—
exciton annihilation, we will denote it as H,,,;,- The
explicit form of this Hamiltonian and taking into
account its contribution to equations of motion will be
considered in the third section of the work.

Based on the aforesaid, the complete Hamiltonian
of the system can be represented as a sum of two

Hamiltonians H(¢) + H, where H(¢) has the form

annih»
H(t) = Hfree +Hel(t)+Hinl' (5)

In fact, Hamiltonian (5) describes transitions only
between the first and second levels of molecules, since
the interaction with the third level arises only upon
taking into account H,,,;,. For particular calculations,
itis convenient to replace Hy,.. in (5) with its truncated
form if we set £, = E,, =0 and take into account
that all the interaction Hamiltonians, including
H,,.in» do not depend on the operators C,, and C,,.

Then, Hg,.. can be represented as

Hyo = D (h®,,B, B, + h0,;D,D,),  (6)

m

where ho,,, =FE,, — E,, and ho,,; =E,; — E,. In
this part of the work, upon the derivation of equations
of motion, we will use only Hamiltonian H(f), or,
more exactly, its stationary version H, which will be
obtained in the next section.

2.3. Equations of Motion for Operators of the System

Having known the Hamiltonian of the system, one
can derive equations of motion for an arbitrary opera-
tor 4 of the system. Such an equation of motion has
the form

dA/dt = i[H (1), A]/h. (7)

Let us eliminate the explicit dependence on time
from H(r). For this purpose, instead of the operators
B,, we should introduce new operators
b, =B, exp(ivut) (see Eq. (3)). In this case, in order
to preserve the independence on time of the Hamilto-
nian H,,.,, we should also introduce the operator
d, = D, exp(iv,,t) instead of D,,. Based on (7), we can
obtain the following equations of motion for operators
b,and d,;

db,,/dt = ivy,b,, +i[H(1),b,]/h,

dd,Jdt = vydy + i[H (1),d,] /. ®)
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It can be shown that frequency shifts in these equa-
tions are a result of the application of the following
operation to the operators b,, and d,,,:

ilebm = _i[H12abm]/h: (9)
vd, = _i[HIZadm]/hv

where

Hyy =1v, ) (byb, +2dyd,,). (10)
By substituting (9) into (8) and replacing the oper-
ators B,, and D,, (and, correspondingly, B, and D, ) in
H(z) by b,,(b,) and d,,(d,,), we finally obtain the follow-
ing equations of motion:
db,,/dt = i[H,b,]/h,
dd,/dt = i[H,d,]/h.
Here, H denotes the stationary operator of the follow-
ing form:

(11)

H =[H() = H\3l| 5,5, exp(-ivy) - (12)

Dy, =d,, exp(~ivyyt)

As a result of the replacement of operators per-
formed above, the Hamiltonian H,(7) ceases to explic-
itly depend on time and will be further denoted as H,
while operator Hg, (6) is transformed into a new
operator, which we will denote as H,:

Hy = (Hpee — Hyy)
= Z[h((’)mlz = V12) Dby + (13 — 2V12)d;dm:|' (13)

In this case, the designations for the operators H,,,
and H,,,;, remain unchanged.

It is rather evident that the passage from the opera-
tors B,,, D,,, and C,, to the operators b,,, d,,, and ¢, is
equivalent to a certain unitary transformation

a=UAU". From the aforesaid, we can easily verify
that

U = exp(—iH ,t/h). (14)

According to the accepted notations, we finally
obtain the following expression for operator H:

H=H,+H,+H,, (15)

Precisely this stationary operator will determine
the evolution of the system in this section.

For a quasi-two-level system, which is described by
operator (15), the most important one-particle opera-
tors that determine the behavior of the system are b,,,
Nye, and N, (m =1, 2, ..., N). Using (15), one can
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show that the system of equations for these operators
can be represented in the following form (see (11)):

db
D — | -A
s

1, 12
b,——m e)EN,,—N,
2h(l‘ DE( )

(16)
1 z']gege(Nme - ng)bn:la
dN, . 1 12 +
e _ 4 _ L E\(b,—b
dt l|: 2ﬁ(u el) 1( m m)
(17)
1 gegeXx , + gege ; +
+f_i2(‘]mn bn bm_Jmn bmbn):|3
deg |1 12 +
— == E\b, —b
r llizh(ll e)E (b, —b,)
(18)

+ %Z o by = I 0, bm)}-
n+m
Here, we assume that, in equations, ®,,, = ®,;,, and
A, = o), — Vvy,. It should also be noted that
%
T = T

(19)
This relation follows from the hermiticity of the
operator H,, (see (4)).

2.4. Equations of Motion for Averages of Operators

In what follows, we will be mainly interested in
equations for the expectation values of operators,
which are obtained by averaging of the latter over the

time-independent density matrix of the system p,.
Then, the expectation value (A4) of the operator A will
be defined by the expression (A) = Tr(A4p,). By averag-
ing Egs. (16) and (17) in this way, we obtain the follow-
ing system of equations for (,,) and (N, ):

db
e[ grenen )
lzjgege(2<Nmeb > < > < mfb >:|
d(N,.) 1,12 +
T =] —E(N e)E, ((bm> - <b’">) o
1 egek [+ ege [+
5 2R ) = 95 <”m”">)}'
In this case, using relation N,, + N,, + N, =1, we

eliminate N, from consideration here and below by
expressing it in terms of N,,, and N,,. Since the equa-

OPTICS AND SPECTROSCOPY Vol. 115

LEVINSKY et al.

tion for (N ) will be obtained only in the third section
of this work, the system of equations for one-particle
averages in this section is reduced to merely equations

for (b,) and (N ).

It can be easily verified that these equations contain
expressions for two-particle averages, such as (N meb,,),
<b,:b,,>, etc. It is clear that equations of motion for

these expressions should also be derived. Thus, e.g.,
for (N,.b,), the following equation can be obtained:

% _ _%wel)a ((8uba) — (b35,))
+ %%[(J,iige*@fbmbn) il babn)) ] = Sl Nachy)

- i(u”eoEl(z(N Nuo) = (N o) + (NN, Y)

+1 Z[Jgege (2(N N ooby) = (N,oby) + (NmeN,,fb,»]}

l:tn

In turn, this equation contains expressions for two-
particle averages, such as <bmb,,>, <N meN ne>, <N melN ,,f>,

etc., as well as expressions for three-particle averages.
It is also necessary to derive equations for them. This
procedure could be continued further.

In order to close this system and to operate on a
finite number of equations, the factorization method
can be applied. A simplest case of the use of factoriza-
tion is that two-particle averages in equations for one-
particle averages are replaced by a product of one-par-
ticle averages. As a result, we obtain a closed system of
equations, in terms of which a soliton was previously
revealed in [1].

Taking into account two-particle correlations
requires preserving equations for two-particle aver-
ages. In this case, there arises the problem choosing
the basis system of averages, which determine the
behavior of the system. This system contains both
one- and two-particle averages. As soon as this system
is defined, all remaining multiparticle averages in
equations of motion are factorized into different prod-
ucts of basis averages. As a result, we can obtain a
closed system of equations for one- and two-particle

averages. In this work, we used the quantities (,,),
(N e)> and (N ), as well as the quantities (N, N,,),
(N b,), and (b,b,) (m # n), which, in particular, can
be related with two-exciton excitations of the system.

Corresponding complex conjugate quantities should
also be included in this set. In this case, the quantity

(b,,) is proportional to the dipole moment of the mol-
ecule upon transition 1 — 2; the quantities (N ,,,) and
(N mf> determine the populations of the second and
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third levels of the molecule; (N, N,,) can be associ-
ated with the population of two-exciton states, and so
on.

It follows from the aforesaid that, it is also neces-
sary to add equations for (b,b,) and (N,.N,,) to
Egs. (20), (21), and (22). It can be shown that the
equations for these two-particle averages have the fol-
lowing form:

d (buby) _

. i{—Alxbmb,,)—é_l(u”eoElu(Nmebn)

= (bu(1= Nyp))l

. Z TEC12(N,ubby) — (bib,(1—

l¢m I#n

Nl (23)

— Apy (b, - é(u”e»ﬂ[z(mn» —(bp(1= N, )]

an )>]} 5

= —2—17;1(l112e1)El ((Nneb'n> - <b’:N”e>)

JEH (BN b, ) — T (BN b,
)

l:tm I#n

~ L ) By (Nt} — (5N,

Z (Jgege*<Nmeb,,b,> Jeeee <Nmeb;b,>)}

1¢n1¢m

LS 2, N, b)) — (Bubi(1 -

l#n,l#m

d <NmeNne>
dt

(24)

Equations (20)—(24) take into account the interac-
tion of molecules with an external radiation field, as
well as the dipole—dipole interaction between mole-
cules.

Expectation values like <b,;b,,>, m # n have not been

included into the basis system of averages considered
above. These averages describe intermolecular inter-
actions, which can be associated with the excitation of
one-exciton states. Following [14], we describe these
averages as products of one-particle averages (see also
[11, 15]).

Concerning correlations related to three-particle
processes, they are corrections of higher orders of
smallness and are not taken into account in this study.

The next stage of the derivation of equations of
motion deals with taking into account the interaction
of molecules via the transverse radiation field and with
the factorization of these equations.

OPTICS AND SPECTROSCOPY Vol. 115  No. 3

2013

411

2.5. Taking into Account the Interaction of Molecules
via a Transverse Field of Their Radiation
and Factorization of Equations of Motion

In order to further generalize the obtained system
of equations, we take into account interactions of mol-
ecules via the transverse field of their radiation. It can
be shown that, for an arbitrary operator Q of the sys-
tem under consideration, an equation that takes into
account this interaction has the form [16]

~ 2ZYI,k |:b1+QAbk - % b ka + Qbf bk):|- (25)
Lk

By successively substituting operators b,,, N,,
N,b,, b,b,, and N, N,, into (25), we obtain a system
of equations, the right-hand sides of which describe
the evolution of these operators due to the interaction
of molecules with the field of their radiation. After the
averaging the obtained equations, their right-hand
sides should be added to the corresponding right-hand
sides of Egs. (20)—(24).

The matrix v,,, in (25) is the imaginary part of the

complex matrix A, — iy ,,,, Which has previously been
obtained in [8]. This latter matrix can be interpreted as
a matrix that describes the intermolecular retarding
interaction in a chain of molecules, with the matrix

Ymn describing the interaction via the transverse field.
Explicit expressions for the matrices y,,, and A, have
been obtained in [8], and this expression for v,,, has

the form
_sin (kya|m — n|)}
3
|m —n| 26)

2
:l"l_ koa
Y mn ha3{ 0
sin 6}

X (1 —3cos’ 6) + (koa)
Here, a is the distance between neighboring molecules
of the chain of N molecules, 0 is the angle between the

cos(koa|m —n))

m—nf’
2sin(koa|m — n))

jm =i

dipole moment p,l2 and the axis of the chain, and
ky = v,;/c. In the particular case of aggregates with
the chain length L = Na < A (A is the wavelength of
the radiation), v,,, has the form

Yo = 20°ke /31 = 70/2, (27)
where vy, is the radiation damping constant of an iso-

lated molecule. In turn, the real part A, of the com-
plex matrix can be related to constants of the dipole—
dipole interaction between molecules. This relation
can be represented in the following form [3, 8, 14]:

Jon 1B = Ay (28)
If the chain length is much shorter than the wave-
length, A, is reduced to the expression

Ay = (02 /11y, ) (1= 3057 6), (29)
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where r,,, = a(m — n). It can be seen from (29) that A,
describes the ordinary dipole—dipole interaction. Tak-
ing into account the interaction via the transverse field
in equations for averages leads to taking into account
the radiation damping of molecules. Analysis shows
that, in the right-hand side of the equation for (b,,), a
term —v,,,, arises, while, in the right-hand side of the
equation for (N,,), a term —2y,, appears. These
terms can be interpreted as the transverse and longitu-
dinal relaxation constants, respectively, which are
obliged for their origin to the interaction with the radi-
ation field. It follows from (29) that these constants do
not depend on the number m. In reality, longitudinal
and transverse relaxations are caused not only by the
radiation field, but also by intramolecular processes.
Therefore, it is reasonable to generalize the expres-
sions for the constants considered above by introduc-
ing effective quantities that take into account these
processes. We will do this phenomenologically by
introducing into the equation for () the quantity v,
instead of'y,,,, and by introducing into the equation for
(N ) the quantity v, instead of 2y,,,. We will also do
the same with the constants in the equations for two-
particle averages. These constants will also be

expressed in terms of y, and y,. Implementation of all
the transformations that were referred to in this sec-
tion yields a system of equations, which, along with
one-particle averages, also contains averages of prod-
ucts of two and three operators that refer to different
particles. In order to close the obtained system, it is
necessary to express these averages in terms of the basis
quantities listed in the preceding section by means of
the factorization operation. Upon performing the fac-
torization, it is necessary first of all to take into
account a fast decay of the third level. This immedi-
ately makes it possible to factorize averages that con-
tain the operators N, ¢,,, and d,,. Therefore, averages,

e.g., of the form (AN mf>, can be represented as a prod-
uct (A)(N,, ). We also noted that two-particle averages

of the form <b,;bn> should also be factorized, since they

are not included in the list of basis averages (see
above). The situation regarding factorization of three-
particle averages is more complicated, since, generally
speaking, this operation is not unambiguous. In this
work, we used a standard expression for representation
of arbitrary three-particle averages in the factorized
form. This expression is as follows (see also [15]):

(POR.) = (B)(QuR.) + (Q.)(PR,)
+ (R,)(PQu) = 2(P){Qu) (Ry)-

It can be easily seen that, if the distance between
any pair of particles in this average is fixed and the
remainder is moved to a considerably longer distance,
we will always obtain a correct asymptotic expression
for the factorized average. If all the particles are sepa-
rated to a long distance, then (30) also yields a correct

(30)
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asymptotic expression in the form of a product of one-
particle averages. The meaning of representation (30)
becomes evident if the expression (P)(Q0,)(R,) is
added to and subtracted from its right-hand side.
Then, (30) can be represented as

(POuR,) = (F)(Qn)(R,) +(P)A(Q R,)

+(0n) A(P,R,) +(R,)A(P,Q,), D
where
A(Qp: R,) = (0nR,) = (Qu)(R,),
A(B.R,) = (BR,) (P (R,). (32)

A(P,Q,) =(P0,) - (P){0,).

Therefore, expression (30) is a sum of a completely
factorized average and three terms that take into
account all the possible two-particle correlation cor-
rections. Physically and mathematically, this repre-
sentation is quite justified. However, the use of (30)
requires taking into account certain peculiarities that
are related to the choice of initial basis averages. As an

example, we consider the expectation value <N 1b,:b,,>.
If we factorize it according to (30), then the term
<b;bn> arises, which is not contained in the set of basis

two-particle averages and which, therefore, should be
factorized. Then, however, this term will be automati-
cally cancelled and, as a result, we obtain the following

representation for <N ,b,;b”>:

(Nibsb,) = (bn)(Nib,)

+ (b)Y (Niby) = (N () (B).

Reasoning in the same way upon factorization of

(33)

the expectation value of the form <b,b,,+1bn>, we obtain

<b,b;b,,> = <b,;>(b,bn>.

Upon derivation of equations of motion, along
with three-particle expectation values, four-particle
expectation values also arise (in the third section of the
work), which should also be represented in the factor-
ized form. In this case, among these averages of the
product of four operators, there are averages in which
one of the operators is the operator N .. According to
the aforesaid (see Sect. 2.4), N, should be replaced
byl-N,, - N,,and only averages with N,,, and N,
should be considered as four-particle expectation val-
ues that are subjected to factorization. Taking into
account, as before, only two-particle correlations, we
can easily show that, in turn, there is a factorized
expression for four-particle expectation values, which
is an analog of expression (30):

(ROWRS)) = (POW)(R.S)) +(PR,)(0nS))
+ (BS,){0nR) = 2(P){Cn)(R,)(S,)-

(34)

(35)
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Here, [ # m # n # p. In this case, it can be easily veri-
fied that (35) has the proper asymptotic behavior with
increasing distance between individual molecules.
Similarly to (32), formula (35) can be expressed via
correlations,

(POuR.S,) = (P)(Q) (R,)(S,)
+<P/><Qm>A(RmSp) <><Rn>< S,)

SN0 R) TABLGI RIS e
H(PRYQ.)(S,)+ A(7:5,)(0.)(R)

+ A(P,0,)A(R,.S,) + AP, R,) A(Q,,S,)

ns p

+A(P,S,) A Ry)-

Here, expressions of the type A(F,Q,,) have the same
meaning as in (32). It is seen from (36) that this
expression is a sum of the completely factorized aver-
age and all the possible two-particle correlation cor-
rections of the first and second orders in these correc-
tions. It should be noted that, similarly to cases (33)
and (34), expressions (35) and (36) also have their
peculiarities that are related to the choice of basis aver-
ages. These peculiarities will be taken into account
upon uncoupling particular four-particle expectation
values. All that has been said above makes it possible to
completely unambiguously factorize averages and
obtain a closed set of equations of motion.

Completing the derivation of equations of motion
in this part of the work, let us formulate them in terms

of a local field. The local field E"” is the field that acts
on a molecule with the number m from the side of the
external field and from the side of all the remaining
molecules. We will define this field by the following

expression:

m7Eie) = @ )Ey =21 (A — i) (B)-

I#m

(37)

Introduction of local fields makes it possible to sin-
gle out in the explicit form principal terms and corre-
lation corrections that arise upon uncoupling multi-
particle averages.

Taking into account all the aforesaid, we obtain a
factorized system of equations that was derived with
allowance for interaction with the external radiation
field and the dipole—dipole interaction, as well as the
interaction with the transverse radiation field of mole-
cules,

dijbzm> = —(yL + iA1V2)<bm>

i, 120(m) _
Zh( Eloc)( < > 2<Nme>)

+ ZiZ(Aml - iy,,,/)(<Nmeb/> - <Nm2><b/>)’

I#m

(38)
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d(Nwe) _ (N
| dt 72< me> (39)
gl )
d(Nnebs) _

i + (12 + 1) [Nebs)
+ (i = Y n ) (N ey

= g W)+ 2 = i1 () 808

dt

LT (0ED) + 20(8,, — 1) ()] (B2) (81)

[\
St

¥ é[(ulefﬁl) + 21 (A

[(Nme> <N”f>
_iz (A, —iym,)<b > ((bubr) = (B4) (B1))

l1#m,n

£ 3 (A = 1) [2(Naebr) = (N o) (00) (N )
ne) ) (1= (N o) = 2(Noe))],

— ((Neby) = (N
= {—(ml@ + 1) {bubs)

= 2(N N e}

d{b,b,)
dt
o (W) + 2(8 = i) 5)]
X< [(0u) (1= (N s)) = 2(N cb)] (41)
+i Z (At = 1Y) [2((N ebr) = (N e ) (b)) (bn)

l#m,n

—wm%@mmm—wm—xmmﬁwm@@,

d(N,.N,,)
me ne — . N N
df { Y2< me ne>

2h
—i z (Aml - iYm/)(<Nneb/> - <Nne><bl>)<br;> + C'C']}

l#£m,n
+{m < nj}.

* [L((HIZE&”!) + 2B = 1)) (Vo) 1

Here, A, =A], (to distinguish from A,,), and
{m < n} denotes the replacement of m by n and vice
versa. The contribution to the equations related to tak-
ing into account the exciton—exciton interaction will
be obtained in the next part of the work.
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3. TAKING INTO ACCOUNT THE EXCITON—
EXCITON ANNIHILATION

3. 1. Formulation of the Problem

In this section, we take into account the mecha-
nism of exciton—exciton annihilation, which ensures
the interaction with a third level of molecules, and
obtain an equation for the population of this level,
which is described by the quantity (N, ). In this
equation, we also phenomenologically take into
account the decay of the third level due to transitions
to the first and second levels, which will be done by
introducing the relaxation constants I';; and I,
respectively. The sum of these constants will be
denoted as I' = I';; + I';,. Taking into account the
exciton—exciton annihilation leads to the appearance
of contributions of this process to all the previously
derived equations of motion of the system. The calcu-
lation of these contributions and final formulation of
equations is the main task of this part of our work.
These calculations are rather cumbersome; therefore,
here, we restrict ourselves mainly to the consideration
of the approach to solve this problem.

Previously, upper level f of the molecule in the sys-
tem of three-level molecules was considered as a single
level. However, this level is vibronic, and, to correctly
perform calculations at this stage of the work, we
should take into account its structure. We will assume
that upper level f consists of a series of sublevels v,
which correspond to different vibrational states and
which are characterized by density of states p(F) =

Z O(E — E,) necessary for calculations of the prob-

ability of transitions. As a result, the operators C,, and

D,, (see Section 2.1), which describe transitions
between the first and third levels and between the sec-
ond and third levels, respectively, will now also depend
on v and will be defined

Coy =|mg)(mfv|,

D,,, = | me)(mfv]. (43)

The contribution of the process of exciton—exci-
ton annihilation to the total Hamiltonian will be

described by the Hamiltonian H,,,;,, which has the
form

H nin = Z(Vklbkdlt/ +Vydy,by)- (44)

k#l

Here, we assume that matrix elements V,, depend
weakly on v and, therefore, this dependence is

neglected in (44); however, for detunings A,;, and
A3, it certainly should be taken into account. There-
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fore, operator H, (13) should also be revised, which
will be now written in a more general form

H, = Z|:h(0)ml2 ~Vi2)byby,
" (45)

+ ) (@3, — 2v12>d,;vdmv}.

v

3.2. Calculation of Contributions to Equations
of Motion Caused by Exciton— Exciton Annihilation

In the general form, the contribution to the equa-
tion of motion that is related to exciton—exciton anni-
hilation is described by the equation

dA/dt = i[Harmihs A]/h ’ (46)

where A is an arbitrary operator of the system. In order
to clarify the essence of the approach that is used in
calculations of these contributions, let us consider very
briefly the simplest example of calculation of the con-
tribution from the exciton—exciton annihilation to the

equation for (N, ). To this end, let us consider the
commutator [H,, i, NV ,,.] in formula (46),

Z[(Vplbpd;/ + ledlvb;)Nme
pi/

- Nme(VplbdeT/ + ledlvb;)] .

(47)

For terms in (47) for which all the indices are dif-
ferent, the commutator is obviously zero. Therefore,
only terms for which some indices coincide can make
nonzero contributions to the sum. It can be easily ver-
ified that there are only two such combinations: / = m,
p#mand p=m, [#m. Taking these indices and
substituting explicit expressions for operators that
were determined in Section 2.1, the equation for N,
can be reduced to the following form:

—””Zt = 3 10y, ~Hoc)+ ¥ by, ~Hoc))

(48)

p#EmM
Now, let us consider the equation for the operator
bpd,;v, which appears in the right-hand side of (48),

d(b,dy)/dt = i (Hy + Hopin), by, | /7 (49)
We will analyze the commutator with H,,;,, writ-
ing it in the explicit form
;Z«Vk,bkd; +Vidy, )b,
ot (50)
- bpdr:v(Vklbkdl-:/ +Vydy b))}
OPTICS AND SPECTROSCOPY Vol 115 No.3 2013
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As above, commutator (50) is nonzero only if some
indices coincide. It can be shown that there are six
combinations with coinciding indices,

k=m [l=p, p#m,
k=p, l=m p#+m,
k#mp, |=m p+m, s1)
k=m, l#mp, p#m,
k+mp, [=p, p#m,
k=p, l#mp, p#+m.

Calculating these combinations by substituting the
explicit expressions for operators, we arrive at the
expression for the commutator into the sum in (50),

[(Hdnmh)klva bpdi]

Because the third level rapidly decays, we neglect

mkNmebkb 6lm(1 + 8/(17) (52)

the terms that contain the operators ¢, (C,, ), d,p, (dr),
and, naturally, N

mfv*
Based on the explicit form of operators, we can also

calculate the commutator i[H, bpa’,;v]/ h. As a result,
we obtain

I[HO’bpdr:z—v]/h = i((’)mfv — Wy — (Dme)bpdr:v’ (53)

where Oy = Omizes Wpe = Dp1ns Wy = W3- The cal-
culations performed lead to the following equation for

the average of the operator bpd,:V

M = i(mmfv -0, — O)mg)<bpdn+1v>
| (54)
A Erani)

o

Formal integration of this equation makes it possi-
ble to obtain the following solution:

t

<bpdr;V> = % Idt'exp[l(o‘)mfv - O‘)pe - (Dme)(t - t')]
(55)
% Vg (NN pe) )+ 3 Vo (N, )0 |
k#p
k#m

We will use the approach of the Markovian process
and assume that (N, N, ) (") and <Nmeb,: bp>(t') are

slowly varying functions of time and can be taken out-
side the integral at ' = ¢. Then,
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N o))+ 3 Vo (N B,) 0
k#p
k#m

(byd,) = éVmI,(Nme

O/, — 20,
where ®,,, = ®,, ®, = 0,, = 0,, and P denotes the
principal value of the integral, which arises further
upon replacement of the summation over v by the
integration. Averaging (48), we can easily find that all
the remaining expectation values in this equation can
be simply calculated merely by permutating subscripts
in expression (56) and taking the complex conjugate of
it. Having done this and substituting the obtained
expressions into (48), we finally arrive at the following

equation for (N, ):

+ (@ — 2@}, (56)

d(N,.)
+ Re Y[yt + 128 ) (Nocbib,) — (57)
k#p
k#m

+ (T + izAmppk)<Npeb;bm>]},

where the constants A r

following form:

and w,,, have the

pmmk > pmmk >

1 4 mek
A mmk = =P P—’
pmmk h2 Z(va — 20)6 (58)
pmmk - 27[2 k8(wfv 2('0e)3
Wap = 2L ppom- (59)

The constant w,,, coincides with the same constant

that, in particular, appears in [4].

A procedure that is similar to that described above
is also applied for the calculation of contributions
from the exciton—exciton annihilation to all the
remaining equations of the system under consider-
ation. It should be noted that the calculation of contri-
butions to the equations for two-particle expectation
values become even more bulky. The calculations per-
formed yielded the following system of equations, in
which we also took into account the decay of the third
level:

d(N )
d—f == ZWmI<NmeN/e>
I¢m (60)
+ Re Z (Flmmk + 21A1mmk)<Nmeb;b1> - F<Nmf>v
k#m,l#m
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d

<]d\zme> = _é {Wml <NmeN[e>
+Re Y[t + 284 ) (N bichy )

k#l
k#m

(61)

+ @i + i2Amllk)<NlebI:bm>:|} +15 <Nmf>s

d{by)
dt

= Z Z(_izAkllm + T ttim) (N1eN ebic)

l#m | k#l
k#m

+ Z(iAnllm - %Fnllm)<bane>

n#l
n#m

+ (IZAmIIm - %wml)<Nlebm>

(62)

+ Z (iAkmml - %rkmml)<bl+bkbm> )
k#m
k=l

d<NmeNne> -
dt
- z (ka + Wnk)<NkeNneNme>

k#n,k=m

—Re > [Tt + 128 XN b by)

k#n,k+m

+ (rnmmk + lenmmk)(JVmebI:rbnﬂ
Z (rlmmk + rlnnkXbI:bINmeNne)

k#nk#m,k+l
I#n,l#m

- Re z [y + i2Am1/k)<b;meleNne>

k#nk#=m,k#l
l#n,l#m

+ (U + 20,5 Xb{ b, NN ,.0)]
+ 1—‘32(<Z\']me]vnf> + <NneNmf>)’

d{b,b,) 1 ) (B,5,)

-, = _(_ Winn — 2I'Amnnm
dt 2
- % Z (rkmmn - 21Akmmn)<bmbk>
k#n,

k#m

- % Z (Fknnm - 2I'Aknnm) <bnbk>
k+#n,
k#m

1 .
= 3 O 4 ) = 2 i+ Ay (BN
k#n,
k#m

_Wmn<NmeNne>

(63)
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+ %Z (rkmmn - 2iAkmmn)<bmkane>

k#n,
k#m
+ %z (rknnm - 2iAknnm)<bnkame> (64)
k+#n,
k#m
1 .
- 5 Z [(rlmmk + 1—‘Innk) - 2I(Almmk + A/nnk)]<bnbmb1:b/>
k#n,k+m
1#m,l#n
k#l
1 .
- 5 Z @ ssem — 21A1kkm)<bnNkeb1>
k#n,k#m
I#m,l#n
k#l
+ Y o = 20 44n) (BN e N by
k#nk+m
l1#m,l#n
k#l
1 .
"5 Z T iten = 21A/kkn)<mekeb1>
k#n,k+m
l1#m,l#n
k#l
+ z @ en — 2iAlkkn)<me nelV kebl>7
k#nk+m
l1#m,l#n
k#l
d{b,N
M ~ _(l Won — 2iAmnnm)<bnNme>
dt 2
- l Z (rknnm - 21Aknnm)<bkbnbr:>
2 k#m,
k#n
1 .
- E Z (rkmmn - 21Akmmn)<kame>
k#m,
k#n
- lzz A/cmmn <kameNne>
k#m,
k#n
- Z (l Wake + Wy — 2iAnkkn)<bnNmeNke>
k#m, 2
k#n
- % Z (kakn + 2iAmkkn)<mekeNne>
k+#n,
k#m
| . (65)
- = Z @ sen — 2lAlkkn)<NmeNkebl>
l1#m,l#n
k#m,k+n
¢l¢k¢
1 .
- A Z [(rlmmk + l—‘Innk) - 2I(Almmk + Alnnk)]
l#m,l#n
k#m,k#n
1k
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x <bnN mebi b/> - % Z Cikkom = 2 pgom) <bnN kebr:;bl>
1#m,l#n

k#=m,k#n
1#k

1 .
-3 Z @ s + 21Amkk1)<bl+N kebmbn>
l#m,l#n
k#m,k+n
1%k

1 > Chm +21'Ak,,,,,,,)<b,+ Nmebkbn>
l#m,l#n

k#m,k#n
Ik

+ Z (— 2iAlkkn)<NneNmeNkeb/> +T5 <bnNmf>'

l1#m,l#n
k#m,k#n
1#k

3.3. Equations of Motion in Factorized Form

In the preceding section, we obtained the system of
equations that describes the contribution to the total
system of equations of motion that is caused by the
exciton—exciton annihilation. This system contains
multiparticle expectation values, which should be rep-
resented in a factorized form in order to obtain a
closed system of equations of motion. Clearly, as a
result of this factorization, the multiparticle expecta-
tion values mentioned above should be in the form of
combinations of products of one- and two-particle
expectation values that belong to the basic system of
the expectation values, which was constructed previ-
ously in the second section of this work. Following the
rules of factorization that we introduced in this sec-
tion, we finally obtain the following system of equa-
tions of motion:

d{Nu) _
S Z{% o (Vo)

I1#m

+ Re Y Tt + 28) (B ) (Noney) + (B (BN )
k#l

k#m (66)

<bk ><b1>< >)} ~T(Noy),

% = Z { (NoeVoc)
+ Re z I:(F/mmk + iZA/mmk)(<b/:><Nmeb/>
+ (Br) (N b ) = (B2) () (N ) (67)

+ e + 128 ,0) (<b1:> <N/ebm>
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+ <Nme><Nlebk

+ (bu) (N1 ) = (B Y (Bud (Vi) |+ T2 (N

db
dibs) _ Z Z(rkllm = 1281 ) (N o) (N i)

l#m | k#l
k#m

(BN NN e) = 2{N.e) (N o) (bic))

)+
- 2(2 nllm lAn[lm) b Nle> (68)
(

n#l

Wi — i2AmlIm)<Nlebm>

= 3 (T = ) (5 )80

k#m
k#l
M ~ W, < N, N,,e>
dt
- Z (wmk + Wnk)(<Nke><NneNme> + <Nne><NkeNme>
k#m,
k#n

+ (Nie) (NieNe) = 2(N ) (N e} (None)
~Re D (T + 28) ((B) (B N o)

k#m,
k#n

(B (BN o) = (Ba) (b1 ) (Vo)
~Re 3 ot + 268 ) (81) (55 N o)

k#m,
k#n

* <b;><b”Nm€> - (bn><blj> <Nme>)
Z (T kmmt + T unt) (i) <b1+> (N peN )

l#m,l#n,
k#m,k#n,
1=k

BN Y (B Noe) + BN B N (69)
= 2(B) (B ) (Nne) (Noe))
- Re z @ rrr + 2iAmkk1)(<bm><bl+><NkeNﬂ9>

l1#m,l#n,

k#m,k+n,
1#k

+ (buNie) (B Noe) + (BN o) (b N
= 2(ba) (b7 ) (N i) {(N.)

“Re D (Copar + 250) (B) (B ) (N e Vo)

l#m,l#n,
k#m,k#n,
1%k



418 LEVINSKY et al.

Ny ) (BN i) + (BN o) (BN )

=28 (b YN )N

+ T (Ne) (Vo) + (Vo) (N ).
d(bb,) _(l W, — 2iAmnnm)<bmb">
dt 2
— % Z @ rmn — 2iAkmmn)<bmbk>
k#n,
k#m
— %; T — ZiAknnm)<bnbk>
k#m
_ Z(% We + W) = 20 o + Ankkn))
k#n,
k#m

% ((b) (BN ie) + (ba) (BN e) + (Nie) (Bubn)
= 200 (B (N1 + 5 3 Ty = 2

k#n,
k#m

X (b (Bl e) + (bi) (b ne) + (Noe) (Bbi)

— 2B (BN, + % > T = 2 )

k#n,
k#m

X (Bi) (0uNme) + (B} (B me) + (Nine) (Bib)

—2<bk><bn><Nme>>—§ > Tt + Tont)

k#n,k#m
l#m,l#n
k#l

= 20 i + A (B2 ) (B1) (BB, (70)
+ (bw) (0i0y) + (. ){Bibw) = 2(b1) (b} b))

—5 D ot = 2iAp) (b)) (BN ) + (B (BN )

k#n,k#m
I1#m,l#n
k+#l
+ (Nie)(biby) = 2(b;)(ba) (N e )
+ D Cotn = 2081 (N ) (N b
k#n,k#m
1#m,l#n
k#l
+ <NkeNme><blbn> + <Nkebn><b/Nme>
“ 2N )N B) 2 T g~ 2 )
k#n,k#m
1#m,l#n
k#l

X (b)) (byuN o) + (b ) (BN o) + (N o) (bib,)
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Z @ ikn = 28 i)

k#n,k#m
l#m,l#n
k#l

X (<Nkebl> <Nnebm> + <NkeNne> <blbm>
+ (Niebn) (0N e) = 2(N o) (b1) (N e} (b))

M ~ —(% Win — 2iAmnnm)<b”N’”e>

dt
Z(Fknnm 21Aknnm)< ><bkb>

k¢m
k#n

- % z (rkmmn - 2lAkmmn) <kame>
k#m,
k#n

= 2(b) (b} (Nie)) +

~12)" M (B ) (N N o) + (N o) (BN )

k#m,
k#n

(Ve (BN ne) = 2(Bi) (N e) (N ve)

- Z (%Wﬂk + W = 200 i ((bﬂ><N”’eNke>

k#m,
k#n

(N owe) (0ul ke) + (N i) (BaNime) = 2{Bu) (Nime) (Nice))

- % z (kakn + 2iAmkkn)(<bm><NneNke>

k+#n,
k#m

(Vo) (bl ke) + (Nie) (b e) = 2(bn) (Ne) (Nic))

S T — 2080 ((B) (Ve V)

l#m,l#n

k#m,k#n
1#k
+ (Nine) (BiN ) + (N ie) (0N me) = 2(b1)(None) (Ne))
- l [(Flmmk + l—‘lnnk) - 2I(Almmk + Alrmk)] (71)
Eomin
1#k

X (B None) (biby) + (B ) (1) A(N e,
+ <b,,>A(b1, Nme)]) - % Z Corm = 218 pim)

l#£m,l#n
k#m,k#n
1%k

X (BN e ){Bib )+ (b (B AN s b,) +(B,) MG, N i)

—% Z (T paas + 2iAmkk1)(<bl+Nk€><bmb”>

l#m,l#n
k#m,k+n
1#k

+ <b,+>[(bm>A(Nke,bn) + (B A(B Nio)])
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_% z O mmt + 20D i) Z O ers + 2 i)

l#m,l#n I#m,l#n
k#m,k#n k#m,k#n
1%k 1%k

x (<b1+Nme><bkbn>+<bl+> [(bk>A(Nmeﬂbn)+<bn>A(bk7 Nme)]) ’
+ Z T iten = 260 ) ((Nkeb/> <NmeNne>

l#m,l#n

k#m,k+n
1k

+ <NkeNme><bane> + <NkeNne><blee>

= 2(N o) (B) (N o) (N ) + T2 (b)) (N o).
Upon numerical solution of the above-presented sys-
tem of equations, we will approximately assume that
all the quantities of form A, are zero. We also assume
that quantities I',,,,, which are expressed in terms of
matrix elements of the exciton—exciton interaction,
are nonzero only for the interaction with nearest
neighbors, when [p—¢| =|g—s| =1 (p # ¢ #5), and
the quantities I, = w,,/2 are nonzero when |p — ¢| =
1. We will also assume that all the quantities I',,,; are
real-valued. By virtue of what has been, expressions
forI',, . used in equations have the following form:

pqqs
D Tosem =T komme = Wik /25
Woe = W(8kmry + Oxemeny)> Kk = m,
Wok =Wl . k#n.

Here, m — n denotes the replacement of m by n and
d,, is the Kronecker symbol.

(11) Wmn = W(Sn(mfl) + 8"(”1*1))’ m#n ’
Wik = W(Sk(m—l) + 6k(m+1))(1 - Skn)s k #m,n,
Wok =Wl ., k#=mn, m#n.

The expression m < n denotes the replacement of
m by n and vice versa.

(lll) annk = I_‘knnm = w(Sk(n+1)8n(m+l) + 8k(n—1)8n(m—1))/2’

k#mmn m+#n.

(iV) Uk = T kmmn = W(Sn(m+l)6k(m—l) + 6n(m—l)6k(m+l))/29
k #mn, m+n.

(V) kakn = Fnkkm = W(Sk(m—l)gn(m—Z) + 6k(m+1)8n(m+2))/23
k#mmn m+#n.

VD) Tt = T = W(Sk(m—1)61<m+1)

+ 6k(m+l)61(m—l))(1 —84)(1-3,,) /2,
k+mn, [#mn, k+#I.

Vi) Ty = Ui = 1—‘kmm/|m<3n‘
Vi) T s = T = W (m-1yO1m-2)

+ 8k(m+l)61(m+2))(1 —84)(1-8,) /2,
k#mmn, [|#mn k=l

() Tt = Tipn = 1ﬂmk1<1|,,,<:,,,-
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Clearly, the total system of equations is obtained by
combining Egs. (38)—(42) from the second section
and Egs. (66)—(71) presented above. Because this total
system is extremely cumbersome, we omit the com-
bined version.

Therefore, in this work, we have obtained from first
principles a closed system of equations of motion for
molecular J aggregates in the form of a chain of three-
level molecules, in which we took into account two-
particle correlations between molecules of the chain.
The system of equations refined in this way can be used
to study the hysteresis and various nonlinear effects, as
well as for calculation and analysis of characteristics of
dissipative molecular solitons.
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