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1. INTRODUCTION

Excitation of J aggregates by resonant radiation can
give rise to nonlinear effects in these systems. Thus, in
[1, 2], an effect of bistability in a single J aggregate has
been predicted theoretically, and, in [3–5], this effect
was predicted in an ensemble of molecular aggregates
in a thin film. The mechanisms by which bistability
arises in one molecular aggregate and in an ensemble
of molecular aggregates are different (their detailed
comparison can be found in [4]). In theoretical study
[6], the possibility of excitation of a dissipative soliton
in an individual J aggregate was demonstrated in terms
of a model of three�level molecules. In this latter case,
a traditional system of equations was investigated,
which was obtained based on a semiclassical approach.
In these equations, only two�particle interactions are
taken into account usually in the factorized form. An
analysis of these equations from the first principles
showed that three�particle contributions also arise in
them, which are caused by the exciton–exciton anni�
hilation effect [7]. A closed system of equations that
takes into account the three�particle interaction can
be obtained by neglecting completely correlations
between molecules and factorizing the expectation

values that correspond to these three�particle contri�
butions. The system of equations obtained in this way
is the simplest example of taking into account multi�
particle effects related to two�exciton annihilation.

It should be kept in mind that three�particle contri�
butions obtained in this way have an essentially inter�
ference nature. Indeed, characteristic interference
phenomena occur when the transition probability
amplitude from a given initial to a given final state is a
sum of two or more partial amplitudes, which have
rather well�determined phase states. Thus, e.g., the
quantity

(decay constant from formula (58) in [7]) is related to
interference of different pathways of decay of the two�
exciton state with participation of molecule m. This
state can decay because of the interaction either with
molecule р ( ) or with molecule k ( ), and it is
impossible to know which of the pathways is, in fact,
realized.
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Analysis shows that factorized three�particle con�
tributions can include as a multiplier an expectation
value of the operator of the number of molecules at the
lowest level. A particular feature of the considered sys�
tems [1, 2, 6] is that, in the equilibrium state, this
expectation is close to unity, because the probability of
population of upper levels of molecules is small. This
immediately follows from the normalization condi�
tion that is accepted in this work [7],

,

in which , , and  are the operators of the
number of molecules at site m at the first, second, and
third levels, respectively. Therefore, the above three�
particle contributions are, in fact, two�particle ones
and coincide on the order of magnitude with two�par�
ticle contributions that appear in the traditional sys�
tem of equations. Therefore, even this circumstance
alone can quantitatively and qualitatively affect the
properties of objects under study. Below, taking into
account new contributions to equations of motion, we
analyze the bistability in J aggregates in a special case
that corresponds to the model of a homogeneous
chain of molecules. This model assumes that the indi�
vidual characteristics of all molecules do not depend
on their place in the chain. Numerical calculations are
performed, and their results are compared with the
results obtained in [6].

2. MODIFIED SYSTEM OF EQUATIONS 
OF MOTION FOR ONE�PARTICLE 

EXPECTATION VALUES

In this section, we consider a modified system of
equations from [6], in which we additionally take into
account multiparticle contributions due to the exci�
ton–exciton annihilation mechanism. The system of
equations from [6] is a closed system of equations for
one�particle density matrices, which describe the
behavior of different molecules in the J aggregate. In
order to obtain a modified system of equations, we will
use formulas (38) and (39), as well as (60)–(62), from
[7]. All the three�particle expectation values in the
three latter equations are those that represent multi�
particle contributions, which will be taken into
account in these calculations for the first time. We
should note, as well, that the two�particle expectation
values  in Eq. (62) from [7] also arose from
three�particle contributions of the type 
after the substitution of the equality  = 1 –  –

 into them (see (1) from [7]) and are also taken
into account in calculations for the first time. It should
be noted that the contribution from  is usually
neglected because of a rapid decay of the third level.

To obtain a closed system of the equations listed
above, it is necessary to factorize all multiparticle
expectation values that appear in these equations. Let

1mg me mfN N N+ + =

mgN meN mfN

n leb N

le mg nN N b

mgN meN

mfN

mfN

us perform this factorization and, for convenience of
comparison with the preceding results, let us write the
obtained system of equations in terms of one�particle
density matrices as was done in [6]. It can be easily
shown that

As a result, we arrive at the following system of
equations:

(1)

(2)

(3)

(4)

Here, dots above quantities in the left�hand sides of
equations denote time derivatives. The diagonal ele�
ments of the density matrix are proportional to the
populations of corresponding levels. Due to the nor�
malization

(5)

we can eliminate quantities  from (1). The diagonal
elements of matrices  and  obey the condition

, (6)
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while their off�diagonal elements are defined as

(7)

In (4), the frequency detuning for the kth molecule
appears,

, (8)

where  is the frequency of transition  of the
molecule at site k,  is the frequency of pumping,

= ,  is the average value of the detuning for
molecules in the chain, and  is its statistical strag�
gling with the zero average value and specified vari�
ance (for each molecule with number k, this quantity
is treated irrespective of its values for other molecules).
Quantity  =  is the Rabi frequency, which is
proportional to the amplitude of the external field

. (9)

Other parameters of the problem are the matrix
element of dipole moment μ for the transition 1 → 2,
angle θ between the dipole moment and the axis of the
chain, relaxation constants  and , exciton–exci�
ton annihilation parameter , and constant a of the
one�dimensional lattice of molecules. Comparing
these notations with those from [7], we can see that

 and .

3. DIMENSIONLESS FORM OF EQUATIONS 
OF MOTION

For further calculations, we will use normalized
system of equations (1)–(4). This normalization can
be done in different ways; however, one of the most
convenient of them is related to the normalization to
parameters that arise naturally in terms of homoge�

neous regimes. For these regimes,  and the
parameters of all molecules are considered as identical
averaged quantities. Below, all hysteresis effects will be
investigated precisely for these regimes.

It will shown further that, in the case of homoge�
neous regimes, two natural parameters arise,

, (10)
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which are collective contributions of surrounding
molecules to the decay and shift of the second level of
the individual molecule. For J aggregates, ,

, and the typical scatter of frequency detun�
ings is (0.1–0.2) . Analysis showed that it is conve�
nient to normalize the time and all the parameters of
the system using the quantity . In what follows, all
the coefficients of Eqs. (1)–(4) normalized to  will
be denoted by symbols with bars. However, the nor�
malized constant  will be denoted as . We also note
that, for the normalized time, its previous designation
will be retained. Thus,

(11)

where A is an arbitrary coefficient of system (1)–(4).
In calculations, we used dimensionless equations

for diagonal elements of the density matrix that corre�

spond to the upper,  = , and intermedi�

ate,  = , levels, as well as for off�diagonal
elements  ≡ . Here, k is the number of the
molecule in the linear chain and i is the number of the
chain with a different distribution of frequency detun�
ings  (8) of individual molecules. Below, for brev�
ity, index i is omitted, but, of course, is implied.

The dynamic model is reduced to solving a set of
uncoupled equations for different chains with respect
to dimensionless time t. Designating  = ,

, we have
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where

,

.

Here, the following notation is used:

(15)

4. THE MODEL OF A HOMOGENEOUS 
CHAIN; FORM OF EQUATIONS

For the homogeneous regimes (the same state of all
molecules), we do not consider the boundary condi�
tions at the ends of the chain of molecules, i.e., pro�
ceed to the limit . Let us write Eqs. (12)–(14)
for the elements of the density matrix of one chain,
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As a result, for an infinite homogeneous chain, we
have the following system of equations:
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Analysis of this system shows that, in the approach
used in this work, an additional relaxation channel,
which is related to taking into account new contribu�
tions, can lead, in particular, to a more efficient decay
of the second excited level of molecules of the chain.
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Fig. 1. Hysteresis for the population of the second excited
level upon variation of the Rabi frequency according to
formula (20). The coefficient of the exciton–exciton anni�
hilation acquires values  = (1) 0, (2) 1, (3) 5, (4) 10, (5)
15, and (6) 25;  = –10.
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Fig. 2. Hysteresis for the population of the second excited
level  upon variation of the Rabi frequency for the sta�
tionary solution of Eqs. (17)–(19):  = (1) 0, (2) 1, (3) 5,
(4) 10, (5) 15, and (6) 25. Hysteresis vanishes at a value of
the exciton–exciton annihilation constant   22.7.
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The manifestation of the bistability is related to the
hysteresis dependence of the parameters of the system
under consideration on the intensity of the incident
radiation or, in our case, on squared Rabi frequency

. In the general case, this dependence can arise at a
fixed value of  and on other quantities that charac�
terize the system, e.g., on normalized detuning . In
order to investigate these hysteresis dependences, it is
necessary to consider stationary regimes for system of
equations (17)–(19) by zeroing their time derivatives.
We have to emphasize that, here, we are not investigat�
ing the stability of these regimes. This issue will be the
subject of an independent investigation.

In order to have the possibility of comparing new
results with results of [6], we will initially consider and
analyze the hysteresis function from that work. In
terms of dimensionless variables, this hysteresis func�
tion will have the following form:

(20)

In particular, for , we have

. (21)

We consider the case of a chain of molecules with
 and . It can be easily shown that, in

this limit,  ~  and, consequently, .
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Fig. 3. Hysteresis for the population of the third level 
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5, (4) 10, (5) 15, and (6) 25. Hysteresis vanishes at  ≈ 22.7.
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where  is the sign of the detuning. Equat�

ing  to zero, one can easily find the roots of this
equation,

(24)

and, therefore, determine the condition of existence
of hysteresis at ,

. (25)

Figure 1 shows curves of the hysteresis dependence

of  on  that correspond to function (20) at
 and α = 0, 1, 5, 10, 15, and 25. In this case,

the values of all the remaining parameters that were
used in these calculations and for plots that will be fur�
ther presented in this work are as follows:  = 0.1,

 = 1/3,  = 0.1,  = 10,  = 1,  =

⎯98.8,  = 2.1, and  = 1.1. On the one hand, the
choice of these parameters is oriented to the results of
[6] and, in part, of [1, 2], and, on the other hand, it is
related to the necessity of taking into account to a
greater degree the rapidity of depopulation of the third
level, especially upon calculation of multiparticle
effects.

From Fig. 1, it follows that the hysteresis exists in a
rather wide range of values . More detailed cal�
culations show that the range of existence of the hys�
teresis with respect to this parameter and at  = –10
reaches a value of . However, the analysis given
below shows that taking into account multiparticle
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interference contributions leads to an almost twofold
decrease in the dimension of this range.

5. HYSTERESIS UPON TAKING 
INTO ACCOUNT MULTIPARTICLE EFFECTS

Let us now consider hysteresis dependences that
arise when multiparticle contributions are taken into
account. By analyzing stationary regimes for
Eqs. (17)–(19), we can obtain an analog of Eq. (20),
but, however, in a considerably more complicated
form,

. (26)

Here,

(27)

Therefore, expressions (27) contain not only the

dependence on  but also the dependence on . In

turn, the performed analysis showed that, for , a
quadratic equation can be obtained, the coefficients of
which depend only on . By taking the positively
defined root of this equation and substituting it into

(27), we obtain a dependence of  only on .
Because this solution can be further analyzed only
numerically, we will not present it here explicitly, since
it is too cumbersome.

Figure 2 presents hysteresis dependences of the

population of the second level  on , which corre�

spond to expression (26), at  and different val�
ues of the parameter α. It follows from the calculations
that, with increasing α, the ranges of hysteresis con�
tract, and hysteresis vanishes at a finite value .
Therefore, taking into account multiparticle contribu�
tions leads to an extremely substantial restriction
(Section 4) of the range of existence of hysteresis as a
function of the exciton–exciton annihilation con�
stant. The same conclusions are obtained from analy�
sis of Fig. 3, which shows hysteresis dependences of 
on the squared Rabi frequency.

Figure 4 shows hysteresis dependences of all the
lowest quantities above on detuning  at a fixed value
of Rabi frequency  and the same values of α as
above. It follows from these calculations that the hys�
teresis dependences vanish at .
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Fig. 5. Dependence of the hysteresis width of the popula�
tion of the second level  =  – , where 

and  are the values of the left and right boundaries of
the hysteresis in Fig. 2, on exciton–exciton annihilation
coefficient  and detuning .
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and (b) on exciton–exciton annihilation coefficient α at  = –34. The range of existence of the hysteresis is limited for both
parameters.
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taking into account multiparticle corrections. Set 3 of curves
(from left to right)  = 0.1, 0.2, and 0.3 corresponds to
this case. Vertical dotted lines are boundaries with respect to
the PMT  upon tending to which  → ∞.
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Figure 5 shows the dependence of width of hyster�
esis  (difference between the right and left bound�
aries of hysteresis in Fig. 2) for the population of the
second level on the detuning and exciton–exciton
annihilation constant. The surface obtained makes it
possible to determine not only the domain of existence
of the hysteresis itself, but also, in principle, the most
probable range of parameters in which a dissipative
soliton can be formed. The intersection of this surface
with the plane  = 0 evidently determines the
boundary of the existence of the hysteresis.

In Fig. 6, curves of intersection of this surface by
plane , as well as , are shown. The
obtained curves clearly show the refined boundaries of
the existence of the hysteresis. These boundaries are
shown in Fig. 7 in the plane of parameters  and .
Here, curve 1 bounds from above the range of hystere�
sis that corresponds to formula (20), while curve 2
does the same with respect to formula (26) for the case
of taking into account multiparticle contributions.
Vertical dotted lines correspond to values of  at which

2δρ

2δρ

30α = 34Δ = −

α Δ

α

 → ∞. According to the calculations, these val�
ues are  and . Therefore, the plots
clearly show that, upon taking into account multipar�
ticle contributions, the range of existence of hysteresis
considerably narrows, and, with respect to the param�
eter , it decreases almost by 40%. Consequently, tak�
ing into account multiparticle contributions can, in
principle, lead to an appreciable decrease in the range
of the parameters of the system in which nonlinear
effects can manifest themselves.

It should be noted that, in the considered model,
the possibility of rapid decaying of the third level was
initially assumed, as a consequence of which popula�
tion of this level  should be considerably lower than

. This circumstance also affects the calculation of
multiparticle contributions. Therefore, it is useful to
know the range of the parameters of the system in
which this condition is fulfilled. For this reason, we
plotted curves 3 in Fig. 7, which successively (from left
to right) correspond to the ratios  = 0.1, 0.2,
and 0.3.

At a higher magnification, these curves, including
the curve for  = 0.01, are shown in Fig. 8. All
these curves were plotted such that the ratio of  to 

(as a function of ) is maximal. Consequently, at
specified values of parameters  and , on the chosen
curve, all other values of the ratio , that corre�
spond to these parameters will be only smaller. It can
be easily seen that, with decreasing ratio, correspond�
ing curves are shifted to the left to the  axis.

Figure 9a shows the dependence of  on  on the
boundaries of the range of existence of hysteresis.
Here, the dashed curve corresponds to the case in
which multiparticle contributions are not taken into
account, while the solid curve corresponds to involv�
ing these contributions into consideration. It is seen
that, when multiparticle contributions are taken into
account,  increases with increasing  considerably
more rapidly and, at a shorter base, reaches consider�
ably higher values than in the opposite case. In Fig. 9b,
on the same boundaries and by the same curves, we
plotted the dependences of the ratio  on . In
this figure, the range of only rather small values of this
ratio is shown. It is also seen that the solid curve goes
steeper than the dashed curve; however, at small values
of , the difference between the two dependences
is not so significant as in Fig. 9a.

Therefore, taking into account three�particle
interference contributions in the equations of motion
leads to a restriction of the range of existence of hys�
teresis. However, at the same time, taking into account
these contributions makes it possible to more reliably
single out the range of parameters in which essentially
nonlinear effects can manifest themselves. This, in

/d dΔ α

63.4α ≅ 101.5α ≅

α

3ρ

2ρ

/3 2ρ ρ

/3 2ρ ρ

3ρ 2ρ

Ω

α Δ

/3 2ρ ρ

Δ

2ρ α

2ρ α

/3 2ρ ρ α

/3 2ρ ρ

0 40 80 α

0.04

0.08

ρ2 (a)

0 10 20

0.1

0.3
ρ3/ρ2

(b)

0.2

30
α
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to boundary 1 and solid curve corresponds to boundary 2 in
Fig. 7. (b) Dependences of  on  are plotted on the
same boundaries and by the same curves.
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turn, narrows the range of searching for real physical
systems that correspond to the required parameters.
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