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Photon-assisted tunneling through molecular conduction junctions with graphene electrodes
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Graphene electrodes provide a suitable alternative to metal contacts in molecular conduction nanojunctions.
Here, we propose to use graphene electrodes as a platform for effective photon assisted tunneling through
molecular conduction nanojunctions. We predict dramatic increasing currents evaluated at side-band energies
∼n�ω (n is a whole number) related to the modification of graphene gapless spectrum under the action of external
electromagnetic field of frequency ω. A side benefit of using doped graphene electrodes is the polarization control
of photocurrent related to the processes occurring either in the graphene electrodes or in the molecular bridge.
The latter processes are accompanied by surface plasmon excitation in the graphene sheet that makes them more
efficient. Our results illustrate the potential of graphene contacts in coherent control of photocurrent in molecular
electronics, supporting the possibility of single-molecule devices.
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I. INTRODUCTION

The field of molecular-scale electronics has been rapidly
advancing over the past two decades, both in terms of
experimental and numerical technology and in terms of the
discovery of new physical phenomena and realization of
new applications (for recent reviews please see Refs. 1–3).
In particular, the optical response of nanoscale molecular
junctions has been the topic of growing experimental and
theoretical interest in recent years,4–15 fueled in part by the
rapid advance of the experimental technology and in part by
the premise for long-range applications in optoelectronics.

A way for control of the current through molecular
conduction nanojunctions is the well-known photon-assisted
tunneling (PAT).1,16 that was studied already in the early
1960’s experimentally by Dayem and Martin17 and theoreti-
cally by Tien and Gordon using a simple theory which captures
already the main physics of PAT18 The main idea is that an
external field periodic in time with frequency ω can induce
inelastic tunneling events when the electrons exchange energy
quanta ω with the external field. PAT may be related either
to the potential difference modulation between the contacts
of the nanojunction when the electric field is parallel to the
axis of a junction,14,16,18–20 or to the electromagnetic (EM)
excitation of electrons in the metallic contacts when the electric
field is parallel to the film surface of contacts.18 According to
the Tien-Gordon model.14,16,18 for monochromatic external
fields that set up a potential difference V (t) = V0 cos ωt , the
rectified dc currents through ac-driven molecular junctions are
determined as14,16

IT G =
∞∑

n=−∞
J 2

n

(
eV0

�ω

)
I 0
dc(eV0 + n�ω) =

∞∑
n=−∞

In, (1)

where the current in the driven system is expressed by a
sum over contributions of the current I 0

dc(eV0 + n�ω) in the
undriven case but evaluated at side-band energies eV0 + n�ω

shifted by integer multiples of the photon quantum and
weighted with squares of Bessel functions. A formula similar
to Eq. (1) can be obtained also for EM excitation of electrons in
the metallic contacts18 Note that the partial currents In contain
contributions from ±n. The term Jn( eV0

�ω
) denotes the nth-order

Bessel function of the first kind. The photon absorption
(n > 0) and emission (n < 0) processes can be viewed as
creating effective electron densities at energies eV0 ± n�ω

with probability J 2
n ( eV0

�ω
). These probabilities strongly diminish

with number n when eV0 � �ω that severely sidelines the
control of the current for not strong EM fields (<106 V/cm).1

Recently graphene, a single layer of graphite, with
unusual two-dimensional Dirac-like electronic excitations,
has attracted considerable attention due to its exceptional
electronic properties (ballistic in-plane electron transport,
etc.)21–23 Quite recently there has been interest in a new
kind of graphene-molecule-graphene (GMG) junctions that
may exhibit unique physical properties, including a large
conductance (achieving 0.38 conductance quantum) and are
potentially useful as electronic and optoelectronic devices.24

The junction consists of a conjugated molecule connecting two
parallel graphene sheets. In this relation it would be interesting
to investigate PAT in such a junction to control the current
through it. The PAT in GMG junctions under EM excitation
of electrons and holes in the graphene contacts may be rather
different from that for usual metallic contacts. It was shown
theoretically,25 and experimentally26 that the massless energy
spectrum of electrons and holes in graphene led to the strongly
nonlinear EM response of this system. Sure, the strongly
nonlinear EM response should also lead to a slow falling
down currents evaluated at side-band energies ∼n�ω [see
Eq. (1)] with harmonics index n in comparison to nanojunc-
tions with metallic (or semiconductor27) leads (see below).
This makes controlling charge transfer essentially more effec-
tive than that for molecular nanojunctions with metallic con-
tacts. Additional factors that may enhance currents evaluated
at side-band energies ∼n�ω in nanojunctions with graphene
electrodes are linear dependence of the density of states on
energy in graphene21 and the gapless spectrum of graphene
that can change under the action of external EM field (see
below).

Here we propose and explore theoretically an approach to
coherent control of electric transport via molecular junctions,
using either both graphene electrodes or one graphene and
another one—a metal electrode (that may be an STM tip). Our
approach is based on the excitation of dressed states of the
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FIG. 1. (Color online) Molecular bridge (thick horizontal line)
between left (L) and right (R) graphene electrodes with applied
voltage bias. External electromagnetic field acts on the electrodes.

doped graphene electrode with electric field that is parallel
to its surface, having used unique properties of graphene
mentioned above, like strongly nonlinear EM response, linear
dependence of the density of states on energy, and the gapless
spectrum that can change under the action of external EM. As a
first step, we calculate a semiclassical wave function of a doped
graphene under the action of EM excitation. Then we obtain
Heisenberg equations for the second quantization operators of
graphene and calculate current through a molecular junction
with graphene electrodes using nonequilibrium Green func-
tions (GF). We address different cases, which are analytically
soluble, hence providing useful insights. We show that using
graphene electrodes can essentially enhance currents evaluated
at side-band energies ∼n�ω in molecular nanojunctions.

II. MODEL HAMILTONIAN

Consider a spinless model for a molecular wire that
comprises one site of energy εm, positioned between either
both graphene electrodes (leads) (Fig. 1) or one graphene
and another one—a metal electrode (Fig. 2). The leads are
represented by electron reservoirs L and R, characterized by
the electronic chemical potentials μK , K = L,R, and by the
ambient temperature T . The corresponding Fermi distributions
are fK (εk) = [exp((εk − μK )/kBT ) + 1]−1 in the absence of
external EM field, and the difference μL − μR = eϕ0 is the
imposed voltage bias between the electrodes. External EM
field acting on electrode K , E(t) = E0 cos ωt , changes the
corresponding Fermi distribution (see below). The Fermi en-
ergy of the graphene electrode may be controlled via electrical
or chemical modification of the charge carrier density.28–32 We
consider that steady-state current through a nanojunction does
not influence on the Fermi energy, since such current does not
change a charge of the graphene electrode. The corresponding
Hamiltonian is

Ĥjunction = Ĥwire + Ĥleads + V̂ , (2)

where the wire Hamiltonian is Ĥwire = εmĉ
†
mĉm, and ĉ

†
m

(ĉm) are creation (annihilation) operators for electrons at the
molecular wire. The molecule-leads interaction V̂ describes

FIG. 2. (Color online) Molecular bridge between n-doped
graphene (left-L) and metal (right-R) electrodes. Thick horizontal
line—energy of the molecular bridge εm, μL and μR = μ − eϕ0/2—
chemical potentials of the left and right leads, respectively, in the
biased junction. The energy spectrum of unperturbated graphene is
shown by the solid line. The interaction of EM field with graphene
leads to modulation of its energetic spectrum by the field frequency ω;
dotted and dashed lines show the upper, ε + �ω, and lower, ε − �ω,
first photonic replica of the graphene spectrum, respectively, that
are displaced an amount �ω from unperturbated spectrum. Solid
thin horizontal line: chemical potential of unperturbated graphene
μL = μ + eϕ0/2. Dashed thin horizontal lines: chemical potentials
of the photonic replica μL = μ + eϕ0/2 ± �ω. (a): potential of the
graphene electrode is smaller than photon energy, therefore only the
unperturbated state and the upper photonic replica give contribution
into the current, since their chemical potentials are higher than the
energy of the molecular bridge εm. (b): potential of the graphene
electrode is larger than photon energy, then the lower photonic
replica join the unperturbated state and the upper photonic replica that
contribute to current. The lower photonic replica gives contribution
into the current only in case (b) when its chemical potential becomes
higher than the energy of the molecular bridge, that causes the step
shown in Fig. 3.

electron transfer between the molecular bridge and the right
(R) and left (L) leads that gives rise to net current in the biased
junction

V̂ =
∑
+,−

∑
σ,p∈{L,R}

(Vp±,σ ;mâ
†
p±,σ ĉm + H.c.). (3)
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Here H.c. denotes Hermitian conjugate, and â
†
p±,σ are creation

operators for graphene electrodes (see below). The correspond-
ing contribution to V̂ from a metal electrode does not contain
summation with respect to positive and negative energies (±)
and quasispin index σ .

III. CALCULATION OF SEMICLASSICAL
WAVE FUNCTION

The states of electrons in graphene are conveniently
described by the four-component wave functions, defined on
two sublattices and two valleys. Electron motion in the time-
dependent EM field is described by the 2D Dirac equation21,23

i�
∂ψ

∂t
=

[
vσ̂

(
p̂ − e

c
A

)
+ eϕpot

]
ψ (4)

written for a single valley and for a certain direction of spin.
Here p̂ is the momentum of the quasiparticle, v the Fermi
velocity (v ≈ 106 m/s), σ̂ the vector of the Pauli matrices
in the sublattice space (“pseudospin” space), and A and ϕpot

are vector and scalar potentials of an EM field, respectively.
Suppose a graphene film is excited by a linearly polarized
monochromatic electric field Ex(t) = E0 cos ωt that is parallel
to its plane (x,y). Then Ax = −(c/ω)E0 sin ωt , Ay = Az = 0.
Equation (4) can be brought to a more symmetric form i[P̂ −
(e/c)Â]ψ = 0, introducing matrices γ1 = σ̂y,γ2 = −σ̂x , and
γ3 = σ̂z, where

P̂ = −i�

3∑
k=1

γk

∂

∂xk

, Â =
3∑

k=1

γkAxk
, (5)

x1 = x, x2 = y, x3 = ivt , and Ax3 = i c
v
ϕpot. To obtain a

semiclassical solution of Eq. (4), we shall use a method of
Ref. 33 (see also Ref. 34). Let us put ψ = −i(P̂ − e

c
Â)	.

Then one can obtain the following equation for 	:

[
i
�e

2c

3∑
k,l=1

γkγl(1 − δkl)Fxlxk
−

3∑
k=1

(
�

∂

∂xk

− i
e

c
Axk

)2
]

	 = 0,

(6)

where Fxlxk
= ∂Axl

/∂xk − ∂Axk
/∂xl is the field tensor. Let us

seek a solution of Eq. (6) as an expansion in power series in �:

	 = exp(iS/�)w = exp(iS/�)(w0 + �w1 + �
2w2 + · · · ),

(7)

where S is a scalar and w is a slowly varying spinor35

Substituting the series, Eq. (7), into Eq. (6) and collecting
coefficients at the equal exponents of �, we get that S is the
action obeying the Hamilton-Jacobi equation ∂S/∂t = −H

where H is the classical Hamilton function of a particle:

exp

(
i

�
S

)
= exp

[
− i

�

(
v

∫ t

0

√
p̄2

x+p̄2
ydt ′+e

∫ t

0
ϕpotdt ′

)]
,

(8)

and the equation for spinor w0,

3∑
k=1

{[
∂

∂xk

(
∂S

∂xk

− e

c
Axk

)]
w0 + 2

(
∂S

∂xk

− e

c
Axk

)
∂w0

∂xk

− e

2c

3∑
l=1

γkγl(1 − δkl)Fxlxk
w0

}
= 0. (9)

In Eq. (8), p̄ is the normal momentum that obeys the classical
equations of motion dp̄x/dt = −eEx(t) for a particle with
charge −e, according to which p̄x(t) = px + (eE0/ω) sin(ωt);
p̄ = p − e

c
A where p is the generalized momentum. If one

takes only the first term in the series, Eq. (7), into account, it
can be shown that wave packets behave like particles moving
along classical trajectories.

Let us solve Eq. (9) for spinor w0. We shall introduce a linear
combination of the components of the Hermitian conjugated
wave function ψ† by ψ̄ = ψ†γ3.34 Then using equation ψ =
−i(P̂ − e

c
Â)	 and Eqs. (5), one can show that electronic flux

sk = iψ̄γkψ obeys the continuity equation

3∑
k=1

∂

∂xk

sk = 0. (10)

Put

w0 =
√

ξϕ0 (11)

where we denoted

ξ = −i2w̄0π̂w0 (12)

and π̂ = ∑3
k=1γkπk , πk = ∂S/∂xk − (e/c)Axk

. Then in our
approximation the electronic flux is reduced to sk = πkξ that
gives, bearing in mind Eq. (10),

3∑
k=1

∂

∂xk

(πkξ ) = 0. (13)

Here quantities πk can be written as πk = p̄k, k = 1,2, and
π3 = ±ip̄ with the aid of the Hamilton-Jacobi equation
∂S/∂t = −H and ∂S/∂xk = pk, k = 1,2. Here signs plus
and minus are related to positive and negative energies,
respectively. Equation (13) can be written over as

3∑
k=1

(
∂πk

∂xk

ξ + πk

∂ξ

∂xk

)
= 0. (14)

Using Hamilton’s equations ẋk = ∂H/∂pk, k = 1,2, the time
derivative ẋk can be written as

ẋk = ±v
p̄k

p̄
= iv

πk

π3
, k = 1,2. (15)

This enables us to write down the second term on the right-hand
side of Eq. (14) in the form

3∑
k=1

πk

∂ξ

∂xk

= − iπ3

v

[
2∑

k=1

∂ξ

∂xk

dxk

dt
+ ∂ξ

∂t

]
= − iπ3

v

dξ

dt
,

and Eq. (14) becomes

dξ

dt
= − 1

p̄

∂p̄

∂t
ξ (16)
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since ∂πk/∂xk = 0 for k = 1,2. Integrating Eq. (16), one gets

ξ (t) = ξ (0)
p̄(0)

p̄(t)
(17)

where p̄(0) = p. Furthermore, substituting Eq. (11) into
Eq. (9), we obtain equation for spinor

ϕ0 =
(

ϕ01

ϕ02

)
:

dϕ0

dt
= ± e

2p̄
σ̂Eϕ0,

the solution of which may be written as

ϕ01,2 = 1

2
√

pp̄(1 + cos ϕ)(1 + cos ϕ̄)
{ϕ01,2(0)[p̄(1 + cos ϕ̄)

+p(1 + cos ϕ)] ± ϕ02,1(0)[p̄(1 + cos ϕ̄)

−p(1 + cos ϕ)]}. (18)

The quantities ξ (0) and ϕ01,2(0) in Eqs. (17) and (18)
are chosen in such a way that the wave function ψ =
exp( i

�
S)(−iπ̂ )

√
ξϕ0 should be normalized and coincide with

the wave function of unperturbated graphene in the absence
of external EM field.21 After cumbersome calculations we get
the wave function normalized for the graphene sheet area s:

ψ = 1√
s

exp(ipxx/� + ipyy/�)

× exp

[
i

�

(
∓ v

∫ t

0
p̄dt ′ − e

∫ t

0
ϕpotdt ′

)]
ūp± (19)

where slowly varying spinors ūp± are equal to

ūp±= 1√
2

(
exp(−iϕ̄/2)
± exp(iϕ̄/2)

)
, (20)

p̄ ≡ |p̄(t)|, tan ϕ̄ = p̄y/p̄x , px = p cos ϕ, py = p sin ϕ,
tan ϕ = py/px .

Equations (19) and (20) show remarkable and very simple
results, according to which the time-dependent part of the
semiclassical wave function is defined by the same formula
as that for the unperturbated system with the only difference
being that the generalized momentum p should be replaced by
the usual momentum p̄. The space-dependent part of the wave
function remains unchanged.

Heisenberg equations for the second quantization
operators of graphene

The wave function of the graphene sheet interacting with
molecular bridge 
 may be represented as the superposition
of wave functions, Eqs. (19) and (20). Passing to the second
quantization, we get


 = 1√
s

∑
+,−

∑
p

âp±

× exp

[
i

�
pr + i

�

(
∓ v

∫ t

0
p̄dt ′ − e

∫ t

0
ϕpotdt ′

)]
ūp±

(21)

where âp± are annihilation operators. To obtain the Hamil-
tonian in the second quantization representation, consider an
average energy of a particle with wave function ψ that is
given by

∫
ψ∗Ĥψdr =i�

∫
ψ∗(∂ψ/∂t)dr. Replacing wave

functions ψ for 
 operators and integrating with respect to
r, we get

Ĥ =
∫


†Ĥ
dr =
∑
pσ

∑
+,−

â
†
p±,σ âp±,σ [±vp̄(t) + eϕpot(t)],

(22)

where
∑

σ â
†
p±,σ âp±,σ = â

†
p±âp±, σ = 1,2 is the “quasispin”

index. In deriving Eq. (22), we have taken into account that the
main contribution to ∂
/∂t in the semiclassical approximation
is given by the exponential term on the right-hand side of
Eq. (21) (see Ref. 36, Chap. II). In addition, we bore in mind
that the summation over p can be substituted by the integration
over phase space d� = dpdr

∑
p

→
∫

d�

(2π�)2
= s

(2π�)2

∫
dp. (23)

Using the Hamiltonian, Eq. (22), we obtain the Heisenberg
equations of motion

dâp±,σ (t)

dt
= i

�
[Ĥ ,âp±,σ ]� i

�
[∓vp̄(t) − eϕpot(t)]âp±,σ (t).

(24)

IV. FORMULA FOR THE CURRENT

The current from the K lead (K = L,R) can be obtained
by the generalization of Eq. (12.11) of Ref. 37:

IK = −2κe

�
Re

∑
+,−

∑
σ,p∈K

Vp±,σ ;mG<
m;p±,σ (t,t), (25)

where κ = 1 for the metal electrode, and κ = 2 for the
graphene electrode that accounts for the valley degeneracies
of the quasiparticle spectrum in graphene. G<

m;p±,σ (t,t ′) =
i〈â†

p±,σ (t ′)ĉm(t)〉 denotes the lesser GF that is given by

G<
m;p±,σ (t,t ′) = 1

�

∫
dt1V

∗
p±,σ ;m

[
Gr

mm(t,t1)g<
p±,σ (t1,t

′)

+G<
mm(t,t1)ga

p±,σ (t1,t
′)
]
, (26)

where Gr
mm(t,t1) and G<

mm(t,t1) are the retarded and lesser
wire GFs, respectively; g<

p±,σ (t,t ′) = i〈â†
p±,σ (t ′)âp±,σ (t)〉 and

ga
p±,σ (t1,t ′) = iθ (t ′ − t1)〈{âp±,σ (t1),â†

p±,σ (t ′)}〉 are the lesser
and advanced lead GFs, respectively; θ (t ′ − t1) is the unit
function. Using Eq. (24), we get

g<
p±,σ (t,t ′) = i〈â†

p±,σ (t ′)âp±,σ (t)〉 = if K (vp±)

× exp

{
i

�

[
−eϕpot,K(t−t ′) ∓ v

∫ t

t ′
dt ′′p̄(t ′′)

]}
(27)

and

ga
p±,σ (t1,t

′) = iθ (t ′ − t1) exp

{
i

�

[
− eϕpot,K(t1 − t ′)

∓ v

∫ t1

t ′
dt ′′p̄(t ′′)

]}
, (28)
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where f K (vp±) ≡〈â†
p±,σ (0)âp±,σ (0)〉= [1+ exp(±vp−μK

kBT
)]−1

is the Fermi function and μK is the chemical potential of lead
K . Substituting Eqs. (26), (27), and (28) into Eq. (25), and
converting the momentum summations to energy integration,
Eq. (23), we get

IK = 4e

�

∫ t

−∞
dt1

∑
+,−

Im
∫ ∞

0

d(vp)

2π
exp

[
± i

�
eϕpot,K (t − t1)

]

×�K
mm(±vp,t1,t)

[
Gr

mm(t,t1)f K (±vp) + G<
mm(t,t1)

]
,

(29)

where

�K
mm(±vp,t1,t) = 2π

�

(
s

2π2�v2

) ∑
σ∈K

∫ π

0
dθvpVp±,σ ;m(t)

×V ∗
p±,σ ;m(t1) exp

[
± i

�
v

∫ t

t1

dt ′p̄(t ′)
]
(30)

is the level-width function.
To proceed, we shall make the time expansion of

�K
mm(±vp,t1,t) into the Fourier series, and then use the

Markovian approximation, considering time t − t1 ≡ τ as very
short. This will also enable us to use the noninteracting
resonant-level model,37 for finding the time dependence
of Gr

mm(t,t − τ ) = −iθ (τ ) exp(− i
�
εmτ ) and G<

mm(t,t − τ ) =
inm(t) exp(− i

�
εmτ ) as functions of t and t − τ where nm(t) is

the population of molecular state m.
According to the Floquet theorem,1 the general solution

of the Schrödinger equation for an electron subjected to a
periodic perturbation takes the form ψ(t) = exp(− i

�
εt)	T (t),

where 	T (t) is a periodic function having the same period T

as the perturbation, and ε is called quasienergy. Therefore, the
interaction of EM field with graphene leads to modulation
of its energetic spectrum by the field frequency ω, where
ω = 2π/T .27 In other words, the energy of an electron can
take values ε + l�ω in the presence of EM field, where
l = 0, ± 1, ± 2, . . . is an integer number. Such states are said
to be the “dressed” states. Then the expansion of function
exp[ i

�
v

∫ t

0 dt ′p̄(t ′)] on the right-hand side of Eq. (19) into the
Fourier series will be as following:

exp

[
i

�
v

∫ t

0
dt ′p̄(t ′)

]
= exp

[
i

�
ε(p,θ )t

]

×
∞∑

l=−∞
cl(p,θ ) exp(iltω) (31)

where

cl(p,θ ) = ω

2π

∫ π/ω

−π/ω

exp

[
i

�
v

∫ t

0
dt ′p̄(t ′)

− i

�
ε(p,θ )t − ilωt

]
dt. (32)

Using expansion, Eq. (31), into Eq. (30) and neglecting fast
oscillating with time t terms, we get

�K
mm(±vp,τ ) = 2π

�

(
s

2π2�v2

) ∑
σ∈K

∫ π

0
dθvp|Vp±,σ ;m|2

×
∞∑

n=−∞
|cn(p,θ )|2 exp

{
±i

[
ε(p,θ )

�
+nω

]
τ

}
.

(33)

Then going to the integration with respect to τ in Eq. (29) and
bearing in mind Eq. (33), we get

IK = 4e
∑
σ∈K

∫ π

0
dθ

∞∑
n=−∞

[nm(t) − f K (vpn±)]

× |cn(pn±,θ )|2γ̄ (n)±
GKσ,m (34)

where we denoted

γ̄
(n)±
GKσ,m = s

2π�3v2

∫ ∞

0
vpd(vp)|Vp±,σ ;m|2

× δ[±(ε(p,θ ) + n�ω) + eϕpot,K − εm] (35)

is the spectral function for the nth photonic replication, δ(x)
is the Dirac delta, and arguments pn± are defined by equation

ε±(p,θ ) = ±(εm − eϕpot,K ) − n�ω (36)

and should be positive. In other words, the spectral function,
Eq. (35), is calculated in the basis of the “dressed” states.
Below we shall consider Vp±,σ ;m not dependent on p± and
quasispin σ .

V. MOLECULAR BRIDGE BETWEEN GRAPHENE
AND METAL ELECTRODES

Consider a specific case when the molecular bridge is found
between graphene and metal (tip) electrodes (Fig. 2). In that
case one can use Eq. (34) for K = L:

IL = 4e
∑
σ∈K

∞∑
n=−∞

[nm(t) − f L(vpn±)]

×
∫ π

0
dθ |cn(pn±,θ )|2γ̄ (n)±

GLσ,m. (37)

If R represents the metal electrode, then

IR = 2eγRm

[
nm(t) − f R

p

]
, (38)

where 2γRm is the charge transfer rate between the molecular
bridge and the metallic lead. In the case under consideration
the equation for nm(t) becomes

dnm

dt
= −IL/e − IR/e (39)

that is written as the continuity equation. Inserting Eqs. (37)
and (38) into Eq. (39), solving the latter for the steady-state
regime and substituting the solution into Eq. (38) for current
IR , we get

IR = 2eγRm

∑
σ

∑∞
n=−∞γ̄

(n)±
GLσ,m

∫ π

0 dθ |cn(pn±,θ )|2[f L(vpn±) − f R
p

]
∑

σ

∑∞
n=−∞γ̄

(n)±
GLσ,m

∫ π

0 dθ |cn(pn±,θ )|2 + γRm/2
. (40)
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For a special case

γRm/2 �
∑

σ

∞∑
n=−∞

γ̄
(n)±
GLσ,m

∫ π

0
dθ |cn(pn±,θ )|2

we obtain

IR = 4e
∑

σ

∞∑
n=−∞

∫ π

0
dθ |cn(pn±,θ )|2γ̄ (n)±

GLσ,m

× [
f L(vpn±) − f R

p

]
. (41)

Equation (41) seems similar to that of Tien and Gordon,
Eq. (1), and generalizes it. To calculate current, we shall use a
variety of approaches.

A. Calculations using cumulant expansions

Function exp[ i
�
v

∫ t

0 dt ′p̄(t ′)] may be written in the dimen-
sionless form as

exp

(
i
α

b

∫ y

0
dx

√
1 + 2b cos θ sin x + b2 sin2 x

)
,

where b ≡ (eE0v/ω)/(vp) and α = (eE0v/ω)/(�ω) represent
the work done by the electric field during one fourth of period
weighted per unperturbated energy vp and photon energy �ω,
respectively; y = ωt , and we assume eE0 > 0. If b < 1, one
can use the cumulant expansion, and we get

exp

[
i
α

b

∫ y

0
dx

√
1 + 2b cos θ sin x + b2 sin2 x

]
= exp[G1(y) + G2(y)], (42)

where correct to fourth order with respect to b,

G1(y) = iα cos θ

(
1 − b2

3
sin2 θ

)
+ i

α

b

[
1 + b2

4
sin2 θ

− 3b4

64
sin2 θ (1 − 5 cos2 θ )

]
y, (43)

G2(τ ) = iz1 cos y + iz2 sin 2y + iz3 cos 3y + iz4 sin 4y.

(44)

Here parameters zl ∼ bl−1 are defined by z1 =
α cos θ [−1 + (3/8)b2 sin2 θ ], z2 = (αb/8) sin2 θ [−1 +
(b2/4)(1 − 5 cos2 θ )], z3 = −(αb2/48) sin 2θ sin θ , and
z4 = −(αb3/256) sin2 θ (1 − 5 cos2 θ ).

As a matter of fact, the second term on the right-hand side
of Eq. (43) that is proportional to τ describes the quasienergy
weighted per photon energy

ε(p,θ )/(�ω) = α

b

[
1+b2

4
sin2 θ−3b4

64
sin2 θ (1 − 5 cos2 θ )

]
(45)

that is anisotropic: ε(p,θ ) = vp when the momentum is
parallel to electric field (θ = 0 or π ), and is most different
from vp when the momentum is perpendicular to the electric
field (θ = π/2). The term exp[G2(y)] can be expanded in

terms of the Bessel functions Js(zi) as38

exp(iz2n sin 2ny) =
∞∑

s=−∞
Js(z2n) exp(i2sny),

exp[iz2n−1 cos((2n − 1)y)] (46)

=
∞∑

s=−∞
Js(z2n−1) exp

[
is

π

2
+ is(2n − 1)y

]

where n = 1,2. This gives expansion

|cl(p,θ )|2

=
[∑

s2s3s4

Jl−2s2−3s3−4s4 (z1)J−s2 (z2)J−s3 (z3)Js4 (z4)

]2

(47)

for quantities |cl(p,θ )|2, Eq. (32), that converge fast.
For a linear case (weak fields) |c0(p,θ )|2 ≈ 1,

|c±1(p,θ )|2 ≈ (α cos θ )2/4, ε(p,θ ) ≈ vp, and we get from
Eq. (36): vpn± = ±(εm − eϕpot,K ) − n�ω. In that case quan-
tities γ̄

(n)±
GLσ,m, Eq. (35), become

γ̄
(n)±
GLσ,m = γ0

π

[
± (εm − eϕpot,L)

�ω
− n

]
(48)

where γ0 = |Vp±,σ ;m|2sω/(2�
2v2), and the expression in the

square brackets is proportional to the DOS for graphene that
is proportional to energy21 The current, Eq. (41), calculated
in the linear regime using Eq. (48), as a function of applied
voltage bias is shown in Fig. 3. In our calculations temperature
T = 0, and the leads chemical potentials in the biased junction
were taken to align symmetrically with respect to the energy
level εm,39 i.e., μ + eϕ0/2 for the left lead, and μ − eϕ0/2 for

FIG. 3. (Color online) Current in the linear regime for n-doped
(μ > 0, solid) and p-doped (μ < 0, dashed) graphene electrode as a
function of applied voltage bias. |εm| = 3�ω, α = 0.7.
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the right lead (eϕ0 � 0, eϕpot,(L,R) = ±eϕ0/2) where μ = εm

for both leads. Both curves of Fig. 3 show photon assisted
current—the steps when the potential of the graphene electrode
achieves the value corresponding to the photon energy. The
steps are found on the background that decreases linearly for
a n-doped graphene electrode and increases linearly for a p-
doped electrode when eϕ0 increases. This is related to the linear
dependence of DOS on energy. Figure 2 shows our model
together with the photonic replica of the graphene electrodes
and elucidates the behavior observed in Fig. 3. Figure 2(a)
corresponds to the potential of the graphene electrode that is
smaller than the photon energy eϕ0/2 < �ω, and Fig. 2(b) to
the potential of the graphene electrode that is larger than the
photon energy eϕ0/2 > �ω. The lower photonic replication
gives contribution into the current only in case (b) that causes
the step shown in Fig. 3.

When the interaction with external field is not small,
α � 1, the linear consideration does not apply. In case of
large momenta (far from the Dirac point), b � 1, Eq. (48)
applies, and we get from Eq. (47) |cl(p,θ )|2 = J 2

l (α cos θ ).
The current, Eq. (41), calculated for large momenta when
α = 3, as a function of applied voltage bias is shown in Fig. 4.
One can see that the number of photonic replica increases
in comparison with the linear case. When the potential of
the graphene electrode eϕ0/2 increases, but it is smaller
than the photon energy eϕ0/2 < �ω, the unperturbated state
and upper photonic replica give the contribution, and the
current decreases linearly for a n-doped graphene electrode
and increases linearly for a p-doped electrode. This is related to
the linear dependence of DOS on energy. When eϕ0/2 achieves
�ω, the first lower photonic replication [see Fig. 2(b)] begins
to contribute into the current that causes the first step. When
eϕ0/2 achieves 2�ω, the second lower photonic replication
begins to contribute that causes the second step and so on. The
number of steps and their heights increase in comparison with

FIG. 4. Current in the case of large momenta for n-doped (μ > 0,
solid) and p-doped (μ < 0, dashed) graphene electrode as a function
of applied voltage bias. |εm| = 20�ω, α = 3.

the linear case. However, the intensities of high harmonics l

diminish as ∼J 2
l (α cos θ ), and they are not seen.

B. Calculations of current including small momenta

To calculate coefficients cl(p,θ ), Eq. (32), in the general
case we need to know quasienergy ε(p,θ ). The latter
may be found as zero harmonic of the Fourier cosine
series of normal momentum p̄(t) on the left-hand side
of Eq. (32). Consider first limiting points θ = 0,π when
the momentum is parallel to the electric field. Then the
quasienergy weighted per the work done by the electric field
during one fourth of period is equal to ε̄(p; θ = 0,π ) ≡
ε(p; θ = 0,π )/(evE0/ω) = [1/(2πb)]

∫ π

−π
dx |1 ± b sin x|.

If b < 1, ε̄(p; θ = 0,π ) = 1/b ∼ vp like above.
When b > 1,

ε̄(p; θ = 0,π ) = 2

πb

[
arcsin

(
1

b

)
+

√
1 − 1

b2

]
(49)

that gives for b � 1

ε(p; θ = 0,π ) = 1

π

[
2α�ω + (vp)2

evE0/ω

]
(50)

—a quadratic dependence of ε(p; θ = 0,π ) on vp for small
vp or large evE0/ω accompanied by opening the gap 4α �ω

π

(see Fig. 6 below). This gap is different from those predicted
in Refs. 23, 40, and 41, which are induced by interband
transitions in an undoped graphene. In contrast, a semiclassical
approximation used in our work is correct for doped graphene
when �ω < 2μ,25 and as a consequence, interband transitions
are excluded. Therefore, in our case the gap is induced
by intraband processes. When ε(p; θ = 0,π ) is defined by
Eq. (50), quantities γ̄

(n)±
GLσ,m, Eq. (35), become γ̄

(n)±
GLσ,m = αγ0/4

that do not depend on n and are proportional to α.
Figure 5 shows the logarithm of the absolute values of

Fourier coefficients c+
l (p; θ = 0,π ) for different l calculated

using Eqs. (32), (36), and (49). For comparison we also
show the usual dependence |cl(p; θ = 0,π )| = |Jl(α)|. One
can see much slower falling down |c+

l (p; θ = 0,π )| with
harmonics index l in comparison to the usual dependence
that may be explained by the peculiarities of the graphene
spectrum.

One can show that |cl(p,θ | falls down as 1/l for b � 1 and
α � 1. Indeed, using Eqs. (50) and (55), one can obtain for
Fourier coefficients cl(p,θ ), Eq. (32),

cl(p,θ ) = 1

π
Re

∫ π

0
exp

[
iα(cos τ − 1) + iτ

(
l + 2α

π

)]
dτ

(51)

when b � 1 (small momenta). To calculate the integral on the
right-hand side of Eq. (51), we use expansion, Eq. (46), that
gives

cl(p,θ ) = 2

π

∞∑
n=−∞

Jn(α)

l + 2α
π

+ n

{
(−1)n/2 sin α, n is even

(−1)
n+1

2 +1 cos α, n is odd

}

(52)
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FIG. 5. The logarithm of the absolute values of Fourier coef-
ficients cl(p; θ = 0,π ) (solid line) versus harmonic number l for
n-doped graphene contact (μ > 0) and α = 0.5, b = 1.43 > 1. For
comparison we also show |Jl(α)| (dashed line). We use the continuous
variable l though l takes only the whole values.

where l = 2k is even. If l = 2k + 1, cl(p,θ ) = 0.
Equation (52) gives c0(p,θ ) � 1 and

cl(p,θ ) � 2α

π

(
1

l
+ l

l2 − 1

)
, l � 2 (53)

for α � 1. Equation (53) shows that cl(p,θ ) ∼ 1/l for l > 2.
Such a behavior is due to strongly nonlinear EM response of
graphene, which could also work as a frequency multiplier.25

Our approach enables us to understand the origin of this
nonlinear response that arises due to modification of graphene
gapless spectrum in the external EM field.

Consider now the middle point θ = π/2 when the momen-
tum is perpendicular to the electric field. In that case one can
show that

ε̄(p; θ = π/2) = 1

2πb

∫ π

−π

dx
√

1 + b2 sin2 x

= 2

π

√
1 + b−2E[(1 + b−2)−1/2], (54)

where E(x) is the complete elliptic integral of the second
kind.38 If b � 1, ε̄(p,π/2) = 1/b like before. When b � 1,
we get

ε

(
p,θ = π

2

)

= 1

π

{
2α�ω +

[
1

2
+ 2 ln

(
2

√
eE0

ωp

)]
(vp)2

evE0/ω

}
, (55)

where the dependence of ε(p,π/2) on p for small p (or large
eE0/v) differs from the quadratic one [cf. with Eq. (50)].

FIG. 6. Quasienergies ε̄(p; θ ) for θ = 0,π (solid line) and π/2
(dashed line) as functions of 1/b = pω/(eE0).

Hence, the quasienergy becomes anisotropic, however, its
formation is accompanied by opening the same dynamical gap
4α �ω

π
as for θ = 0,π . Quasienergies ε̄(p; θ = 0,π,π/2) de-

fined by Eqs. (49) and (54) as functions of 1/b = vp/(eE0v/ω)
are shown in Fig. 6. They are equal to 2/π for zero momentum,
then increase as ∼(vp)2 for θ = 0,π , Eq. (50), and according
to Eq. (55) for θ = π/2. The law, Eq. (49), for θ = 0,π gives
way to linear one when 1/b = 1, and quasienergy for θ = π/2
also tends to linear one when 1/b � 1 (large momenta).

VI. CONCLUSION AND OUTLOOK

Here we have proposed and explored theoretically an
approach to coherent control of electric transport via molecular
junctions, using graphene electrodes. Our approach is based on
the excitation of dressed states of the doped graphene with the
electric field that is parallel to its surface. We have calculated
a semiclassical wave function of a doped graphene under the
action of EM excitation and the current through a molecular
junction with graphene electrodes using nonequilibrium Green
functions. The current is shown in Figs. 3 and 4 as a function
of applied voltage bias. The linear dependence of DOS on
energy reckoned from the Dirac point leads to the background
that decreases linearly for a n-doped graphene electrode
and increases linearly for a p-doped electrode when the
applied voltage bias increases. We have also shown that using
graphene electrodes can essentially enhance currents evaluated
at side-band energies ∼n�ω in molecular nanojunctions that
is related to the modification of the graphene gapless spectrum
under the action of external EM field. We have calculated
the corresponding quasienergy spectrum that is accompanied
with opening the gap induced by intraband excitations. The
quasienergy shows a quadratic dependence on momentum near
the gap, Eq. (50), that gives rise to slow falling down Fourier
coefficients with the harmonics index.
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In our calculations we used steady-state distributions
evaluated at the Floquet energies. This is correct if
frequency ω is much larger than the reciprocal time of
energy relaxation.42 This may be not a case when ω is rather
small (see Ref. 43 where the transmitted terahertz fields
in graphene exhibited no harmonic generation). However,
experiments with higher frequencies show that graphene
exhibits a very strong nonlinear optical response in the near-
infrared spectral region.26 It is also worth noting that we have
neglected fast oscillating terms considering only processes
averaged over the oscillatory period [see comments just after
Eq. (32)]. Therefore, our consideration does not include
harmonic generation that may be more sensitive to dephasing
than processes under consideration in our work. Furthermore,
the n-doped graphene is a well-defined Fermi liquid with the
imaginary part of the self-energy Im �(�) ∼ �2 ln �.44 Using
Eq. (7) of Ref. 44, one can obtain the following estimates of
Im �(�): −7 meV, −23 meV, and −63 meV for the excitations
with energies reckoned from the Fermi level �ω, 2�ω, and
4�ω, respectively, when μ = 1 eV and �ω = 250 meV. For
all these cases �ω is considerably greater than |Im �(�)|.
Therefore, a rapid relaxation of the Fermi distribution to
the quasienergy states seems to us a reasonable assumption.
Due to the linear dependence of DOS on energy reckoned
from the Dirac point, one can expect that the lifetimes of
quasiparticles for the p-doped graphene will be larger than
those for the n-doped graphene. We speculate that this may be
a reason for observing terahertz-induced nonlinear effects in a
p-doped graphene.43 We shall generalize our consideration
of Sec. IV to the non-Markovian case that will enable us
to include carrier-phonon and carrier-carrier scattering.45,46

elsewhere.

Once the manuscript has been submitted, Floquet states of
surface Dirac fermions of a topological insulator have been
observed experimentally47 Therefore, it would be interesting
to generalize our consideration to the contacts made of topo-
logical insulators that may combine the benefits of both semi-
conductor contacts.27,48 and the contacts with Dirac fermions.

Furthermore, if one shall use an electric field that is
perpendicular to the graphene sheet, the field can excite
p-polarized surface plasmons propagating along the sheet with
very high levels of spatial confinement and large near-field
enhancement30–32 In addition, surface plasmons in graphene
have the advantage of being highly tunable via electrostatic
gating.28–32,49 These plasmon oscillations can enhance the
dipole light-matter interaction in a molecular bridge resulting
in much more efficient control of photocurrent related to
the processes occurring in the molecular bridge under the
action of EM field polarized along the bridge,1,9,14,20,27 By
this means a side benefit of using doped graphene electrodes
in molecular nanojunctions is the polarization control of
the processes occurring either in the graphene electrodes
(if the electric field is parallel to the graphene sheet) or in
the molecular bridge (if the electric field is perpendicular
to the graphene sheet). Such selectivity may be achieved by
changing the polarization of an external EM field. This issue
will be studied in more detail elsewhere.
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