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ABSTRACT

Purely organic materials with near-zero dielectric permittivity can be easily fabricated. Here we develop a
theory of non-steady-state organic plasmonics with strong short laser pulses that enable us to obtain near-zero
dielectric permittivity during a short time. We have proposed to use non-steady-state organic plasmonics for
the enhancement of intersite dipolar energy-transfer interaction in the quantum dot wire that influences on
electron transport through nanojunctions. Such interactions can compensate Coulomb repulsions for particular
conditions. We propose the exciton control of Coulomb blocking in the quantum dot wire based on the non-
steady-state near-zero dielectric permittivity of the organic host medium.
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1. INTRODUCTION

Metallic inclusions in metamaterials are sources of strong absorption loss. This hinders many applications of
metamaterials and plasmonics and motivates to search for efficient solutions to the loss problem. In this relation
the question arises whether metal-free metamaterials and plasmonic systems, which do not suffer from excessive
damping loss, can be realized in the visible range? With no doubts, inexpensive materials with such advanced
properties can impact whole technological fields of nanoplasmonics and metamaterials.

Recently Noginov et al. demonstrated that purely organic materials characterized by low losses with negative,
near-zero, and smaller than unity dielectric permittivities can be easily fabricated.1 And even non-steady-state
organic plasmonics with strong laser pulses may be realized2 that can enable us to obtain near-zero dielectric
permittivity during a short time only.

Approach1 was explained in simple terms of the Lorentz model for linear spectra of dielectric permittivities of
thin film dyes. However, the experiments with strong laser pulses2 challenge theory. The point is that the Lorentz
model based on a mean-field theory is described by essentially nonlinear equations for strong laser excitation.
Their general solution is not a simple problem. In addition, such nonlinear equations can predict multi-stability,
bifurcations etc.

Here we develop a theory of non-steady-state organic plasmonics with strong short laser pulse excitation.
Our consideration is based on the model of the interaction of strong (phase modulated) laser pulse with organic
molecules, Ref.,3 extended to the dipole-dipole intermolecular interactions in the condensed matter.4,5 We
also propose the exciton control of Coulomb blocking6 in the quantum dot wire based on the non-steady-state
near-zero dielectric permittivity of the organic host medium using chirped laser pulses.
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2. MODEL AND BASIC EQUATIONS

In this section we shall extend our picture of ”moving” potentials of Ref.3 to a condensed matter. In this picture
we considered a molecule with two electronic states n = 1 and 2 in a solvent described by the Hamiltonian

H0 =
2∑

n=1

|n〉 [En + Wn(Q)] 〈n| (1)

where E2 > E1, En is the energy of state n,Wn(Q) is the adiabatic Hamiltonian of reservoir R (the vibrational
subsystems of a molecule and a solvent interacting with the two-level electron system under consideration in
state n). The molecule is affected by a (phase modulated) pulse E(t)

E(t) =
1
2
eE(t) exp(−iωt + iϕ(t)) + c.c. (2)

the frequency of which is close to that of the transition 1 → 2. Here E(t) and ϕ(t) describe the change of
the pulse amplitude and phase in time, e is unit polarization vectors, and the instantaneous pulse frequency is
ω(t) = ω − dϕ(t)/dt.

One can describe the influence of the vibrational subsystems of a molecule and a solvent on the electronic
transition within the range of definite vibronic transition related to a high frequency optically active (OA)
vibration as a modulation of this transition by low frequency (LF) OA vibrations {ωs}.7–10 In accordance
with the Franck-Condon principle, an optical electronic transition takes place at a fixed nuclear configuration.
Therefore, the highest probability of optical transition is near the intersection Q0 of ”photonic replication” and
the corresponding term and rapidly decreases as |Q−Q0| increases. The quantity u1(Q) = W2(Q)−W1(Q)−
〈W2(Q)−W1(Q)〉1 is the disturbance of nuclear motion under electronic transition where 〈〉n denotes the trace
operation over the reservoir variables in the electronic state n. Electronic transition relaxation stimulated by
LFOA vibrations is described by the correlation function K1(t) = 〈u1(0)u1(t)〉1 of the corresponding vibrational
disturbance with characteristic attenuation time τs.11–20

The analytic solution of the problem under consideration has been obtained due to the presence of a small
parameter. For broad vibronic spectra satisfying the ”slow modulation” limit, we have σ2sτ

2
s À 1 where σ2s =

K1(0)~−2 is the LFOA vibration contribution to a second central moment of an absorption spectrum. According
to Refs.,19,20 the following times are characteristic for the time evolution of the system under consideration:
σ
−1/2
2s < T ′ << τs, where σ

−1/2
2s and T ′ = (τs/σ2s)1/3 are the times of reversible and irreversible dephasing

of the electronic transition, respectively. The characteristic frequency range of changing the optical transition
probability can be evaluated as the inverse T ′, i.e. (T ′)−1. Thus, one can consider T ′ as a time of the optical
electronic transition. Therefore, the inequality τs À T ′ implies that the optical transition is instantaneous.
Thus, the condition

T ′/τs << 1 (3)

plays the role of a small parameter. This made it possible to describe vibrationally non-equilibrium populations
in electronic states 1 and 2 by balance operator equations for the intense pulse excitation (pulse duration tp > T ′).
If the correlation function is exponential: K1(t)/K1(0) ≡ S(t) = exp(−|t|/τs), the balance operator equations
transform into diffusional equations. Such a procedure has enabled us to solve the problem for strong pulses
even with phase modulation.3,21,22

In Ref.3 we have obtained the following equations describing vibrationally non-equilibrium populations in
electronic states j = 1, 2 for the intense chirped pulse excitation:

∂

∂t
ρjj (α, t) = (−1)j ~−2 (π/2) δ (ω21 − ω (t)− α) |D21

~E(t)|2∆′ (α, t) + Ljjρjj (α, t) (4)

where ∆′ (α, t) = ρ11 (α, t)−ρ22 (α, t). Here ρjj are the diagonal elements of the density matrix; α = −u1/~, ω21

is the frequency of Franck-Condon transition 1 → 2, and the operator Ljj describes the diffusion with respect
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to the coordinate α in the corresponding effective parabolic potential Uj (α)

Ljj = τ−1
s

[
1 + (α− δj2ωst)

∂

∂ (α− δj2ωst)
+ σ2s

∂2

∂ (α− δj2ωst)
2

]
, (5)

δij is the Kronecker delta, ωst is the Stokes shift of the equilibrium absorption and luminescence spectra. The
partial density matrix of the system ρjj (α, t) describes the system distribution in states 1 and 2 with a given
value of α at time t. The complete density matrix averaged over the stochastic process which modulates the
system energy levels, is obtained by integration of ρjj (α, t) over α:

〈ρ〉jj (t) =
∫

ρjj (α, t) dα (6)

where quantities 〈ρ〉jj (t) are nothing more nor less than the normalized populations of the corresponding elec-
tronic states: 〈ρ〉jj (t) ≡ nj , n1 + n2 = 1.

2.1 Generalization to dense collection of molecules

Consider a dense collection of molecules, with densities such that there are many molecules within a cubic
molecular resonance wavelength, with two electronic states with energies E1 < E2.

The interaction of the dense collection of such systems with electromagnetic fields can be written as

Ĥint = −
∑

n

P̂n ·El,n (7)

where El,n is the electric field at the location of the n-th molecule (local electric field), and P̂n is its optical
polarization operator. The local (microscopic) field is related to the Maxwell (macroscopic) field E(r, t), Eq.(2),
by4,15

El,n = E(t) +
4π

3

∑

m 6=n

Pm (8)

where Pm denotes the expectation value of P̂m. The second term on the right-hand side of Eq.(8) represents
the electrostatic longitudinal field created by all other particles m (6= n), i.e., the instantaneous dipole-dipole
interactions between the molecules.

Let us introduce an excitonic operator Ân,12 ≡ |n1〉〈n2| where |nk〉 denotes the k state of molecule n.5 Then
the optical polarization operator of the n-th molecule is given by

P̂n = Dn,12Â
+
n,12 + H.c. (9)

where Dn,kk′ is the transition dipole moment connecting states k and k′ of molecule n, and H.c. denotes
Hermitian conjugate. We also introduce operators n̂mk = |mk〉〈mk| describing the population of states |mk〉.
Then the Hamiltonian of the dense collection of two-state systems under consideration can be written as

Ĥ = Ĥ ′
0 + Ĥint (10)

where
Ĥ ′

0 =
∑
m

∑

k=1,2

Emkn̂mk, (11)

Emk is the energy of state k of a molecule m.

Using the Heisenberg equations of motion one obtains the equation for the expectation value of any operator
F̂

d

dt
〈F̂ 〉 =

i

~
〈[Ĥ ′

0 + Ĥint, F̂ ]〉 ≡ i

~
Tr([Ĥ ′

0 + Ĥint, F̂ ]ρ) (12)
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where ρ is the density matrix. Straightforward operator algebra manipulations, using commutation relations,
yield equations for nmk ≡ 〈n̂mk〉 and Am,kk′ ≡ 〈Âm,kk′〉 in the rotating wave approximation (RWA). In the
derivation of these equations we kept only single-particle variables, using a factorization into population variables
nmk and polarizations Am,kk′ in accordance with the local field approximation.15 Then switching to the system
that rotates with instantaneous frequency,

am,12 = Am,12 exp[iωt− iϕ(t)], (13)

we obtain equations for the quantities that vary slowly with time during the period of a light wave. Furthermore,
considering a homogeneous excitation of an assembly of identical molecules (Dn,kk′ = Dkk′ , Emk = Ek, nmk = nk,
am,kk′ = akk′), we get the extension of Eq.(4) to a condensed matter:

∂

∂t
ρjj (α, t) = (−1)j π

2~2
δ{ω21−p12[n1 (t)−n2 (t)]−ω (t)−α}

(
εb + 2

3

)2

|D21
~E(t)|2∆′ (α, t)+Ljjρjj (α, t) (14)

where εb is the “bulk” relative permittivity (which can be due distant high-frequency resonances of the same
absorbing molecules or a host medium),

p12 =
4π

3~
|D12|2N (15)

is the strength of the near dipole-dipole (DD) interaction,4 N is the density of molecules.

Knowing ρjj (α, t), one can calculate the susceptibility χ(Ω, t)3 that enables us to obtain the dielectric function
ε due to relation ε(Ω, t) = 1 + 4πχ(Ω, t):

ε(Ω, t) = 1 + ip12

(
εb + 2

3

)
{
√

π

2σ2s
w[

Ω− (ω21 − p12(n1(t)− n2(t)))√
2σ2s

]−

− πσa

(
εb + 2

3

)2 ∫ t

0

dt′∆′ (ω21 − p12(n1 (t′)− n2 (t′))− ω (t′) , t′)

× J̃(t′)
2∑

j=1

√
σ2s

σ (t− t′)
w[

Ω + p12(n1(t)− n2(t))− ωj (t, t′)√
2σ (t− t′)

]} (16)

where J̃ (t) is the power density of the exciting radiation, σ (t− t′) = σ2s

[
1− S2 (t− t′)

]
,

ωj (t, t′) = ω21 − θj(t, t′) = ω21 − δj2ωst + [ω (t′)− ω21 + p12(n1 (t′)− n2 (t′)) + δj2ωst]S (t− t′) (17)

are the first moments of the transient absorption (j = 1) and the emission (j = 2) spectra, ωst = ~σ2s/ (kBT ) is
the Stokes shift of the equilibrium absorption and luminescence spectra, and

w(z) = exp(−z2)[1 + i
2√
π

∫ z

0

exp(y2)dy]

is the probability integral of a complex argument.23 It is worthy to note that magnitude ε(Ω, t) does make sense,
since it changes in time slowly with respect to dephasing. In other words, ε(Ω, t) changes in time slowly with
respect to the reciprocal characteristic frequency domain of changing ε(Ω).

2.2 Fast vibrational relaxation

Let us consider the particular case of fast vibrational relaxation when one can put the correlation function
S (t− t′) equal to zero. Physically it means that the equilibrium distributions into the electronic states have had
time to be set during changing the pulse parameters. Using Eqs.(6) and (14), one can obtain the equations for
the populations of electronic states n1,2 in the case under consideration, which represent extending Eq.(25) of
Ref.3 to the interacting medium
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dn1,2

dt
= ±σa

(
εb + 2

3

)2

exp{− [ω21 − p12(n1 − n2)− ω (t)− ωst]
2σ2s

2

}J̃(t){n2 −

−n1 exp
[
~β

(
(ω (t) + p12(n1 − n2)− ω21) +

ωst

2

)]
} ± n2

T1
(18)

where β = 1/kBT , n1 + n2 = 1, σa is the cross section at the maximum of the absorption band, and we added
term ”±n2/T1” taking the lifetime T1 of the excited state into account.

In case of fast vibrational relaxation, Eq.(16) becomes

ε(Ω, t) = 1 + p12

(
εb + 2

3

) √
π

2σ2s
{w[

Ω− ω21 + p12(n1(t)− n2(t))√
2σ2s

]n1 (t)−

− n2 (t)w[
Ω− ω21 + p12(n1(t)− n2(t)) + ωst√

2σ2s
]} (19)

3. EXCITATION BY CHIRPED PULSES COMPENSATING ”LOCAL FIELD”
DETUNING

Eqs. (14) and (18) for populations are nonlinear equations where the transition frequencies are the functions of
the electronic states populations. So, their solution in general case is not a simple problem. However, one can use
pulses that are suitably chirped (time-dependent carrier frequency) to compensate for a change of frequency of
the optical transition in time induced by the pulses themselves. This idea was proposed in studies of a two-state
system in relation to Rabi oscillations in inter-subband transitions in quantum wells24 and for obtaining efficient
stimulated Raman adiabatic passage (STIRAP) in molecules in a dense medium.5

Let us assume that we use suitably chirped pulses compensating the ”local field” detuning p12(n1 − n2) that
enables us to keep the value of ω21 − p12[n1 (t)− n2 (t)]− ω (t) as a constant

ω21 − p12[n1 (t)− n2 (t)]− ω (t) ≡ ∆ω = const (20)

In that case one can obtain an integral equation

∆ (t) = 1− σa

(
εb + 2

3

)2 ∫ t

0

dt′J̃(t′)∆ (t′)
[
1− S2 (t− t′)

]−1/2
2∑

j=1

exp[− (∆ω − δj2ωst)
2

2σ2s

1− S (t− t′)
1 + S (t− t′)

] (21)

for the dimensionless non-equilibrium population difference ∆ (t) ≡ ∆′ (∆ω, t) /∆′(0) (∆ω), the effective methods
of the solution of which were developed in Refs.3,22

For fast vibrational relaxation, using Eqs.(18) and (20), we get

dn1,2

dt
= ±σa

(
εb + 2

3

)2

J̃(t) exp(−∆ω2

2σ2s
){n2 exp[−~β

2
(ωst − 2∆ω)]− n1} ± n2

T1
(22)

3.1 Near-zero dielectric function of dense collection of molecules excited with laser pulse

In this section we shall use Eqs.(19) and (22) to demonstrate obtaining near-zero dielectric function in non-
steady-state regime. We shall consider a dense collection of molecules (N ∼ 1021cm−31) with parameters close
to those of molecule LD690:3

√
σ2s = 546cm−1, D12 ∼ 10−17 CGSE that gives ωst = 1420cm−1, p12 = 3.

972 × 1014 rad/s. We shall put εb = 11 and ∆ω = −420cm−1. Figs.1, 2 and 3 show the population of excited
electronic state n2 and the real ε′(Ω, t) and imaginary ε′′(Ω, t) parts of ε(Ω, t) for Ω − ω21 = −2. 040 5

√
2σ2s

during the action of a rectangular light pulse of power density J̃ that begins at t = 0.
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Figure 1. Population of excited state as a function of time.

Figure 2. Real part of the dielectric function as a function of time.
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Figure 3. Imaginary part of the dielectric function as a function of time.

Here we denoted

W = σa

(
εb + 2

3

)2

exp(−∆ω2

2σ2s
)J̃ (23)

- the probability of the optical transitions induced by external field, and τ = Wt - dimensionless time. We put
WT1 = 1000. Figs.1, 2 and 3 illustrate non-steady-state near-zero dielectric permittivity. As population n2

approaches to 1, dielectric permittivity approaches to zero.

4. APPLICATION TO EXCITON COMPENSATION OF COULOMB BLOCKING
(ECCB) IN CONDUCTION NANOJUNCTIONS.

In Ref.6 we studied the influence of both exciton effects and Coulomb repulsion on current in nanojunctions. We
showed that dipolar energy-transfer interactions between the sites in the wire can at high voltage compensate
Coulomb blocking for particular relationships between their values. Although in free exciton systems dipolar
interactions J (. 0.01−0.1eV 25) are considerably smaller than on-site Coulomb interaction U (characteristically
U ∼ 1 eV26) the former may still have strong effects under some circumstances, e.g. in the vicinity of metallic
structures in or near the nanojunctions. In such cases dipolar interactions may be enhanced. The enhancement
of the dipole-dipole interaction calculated using finite-difference time-domain simulation for the dimer of silver
spheres, and within the quasistatic approximation for a single sphere, reached the value of 0.13 eV for nanosphere-
shaped metallic contacts6 that was smaller than U . In addition, this enhancement was accompanied by metal
induced damping of excitation energy.

In this section we show that purely organic materials characterized by low losses with near-zero dielectric
permittivities will enable us easily to obtain J ∼ 1 eV∼ U . We shall consider a nanojunction consisting of a two
site quantum dot wire between two metal leads with applied voltage bias. The junction is found into organic
material with dielectric permittivity ε. The quantum dots of the wire posses dipole moments D1 and D2. The
point dipoles are positioned at points r1 and r2, respectively, and oscillate with frequency Ω. The interaction
energy between dipoles 1 and 2 can be written in a symmetrized form as J12 + J21 where

J12 = −1
2
D1 ·E2(r1,Ω, t), , (24)

J21 = −1
2
D2 ·E1(r2,Ω, t), , (25)
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Figure 4. Enhancement of the dipole-dipole interaction in a medium with dielectric function ε(Ω, t) given by Figs.2 and 3.

E2(r1, Ω, t) ∼ D2 is the electric field at a point r1 induced by the dipole D2, etc.

The electric field is given by Coulomb’s law

E(r,Ω, t) =
1

ε(Ω, t)

∫
ρi(r′)

r− r′

|r− r′|3 d3r′ (26)

that corresponds to the electrostatic approximation. Such extension of the electrostatic formula is possible due
slow changes in time of ε(Ω, t) (see above). Here the external charge density ρi(r′) due to the presence of dipole
Di can be written as27 ρi(r′) = −Di · ∇r′δ(r′ − ri) (we consider a point dipole positioned at point ri). One can
show that U12 = U21 ≡ 1

2~J(Ω, t). This can be expected from the reciprocity theorem,28 according to which the
fields of two dipoles D1 and D2 at positions r1 and r2 and oscillating with the same frequency Ω are related as
D1 · E2(r1, Ω) = D2 · E1(r2, Ω). If the dipoles are oriented parallel to the symmetry axis of the junction,29 the
dipole-dipole interaction is given by

J(Ω, t) =
1

ε(Ω, t)
−2D1D2

|r1−r2|3
(27)

One can define a magnitude

Jrel ≡
∣∣∣∣
J(Ω, t)
Jvac

∣∣∣∣ =
1

|ε(Ω, t)| (28)

that shows the enhancement of the dipole-dipole interaction in a medium with dielectric function ε(Ω, t) with
respect to that

Jvac =
−2D1D2

|r1−r2|3
(29)

in vacuum. Fig.4 shows Jrel as a function of time for a medium with dielectric function given by Figs.2 and 3.
Here Jrel(τ = 0) = 0.2864 and Jrel(τ = 10) = 265.6394, so that the ratio Jrel(τ = 10)/Jrel(τ = 0) = 927. 5 ∼ 103.
In other words, the enhancement is about 103 with respect to the equilibrium state. Putting D1 = D2 = 25D
and |r1−r2| = 5nm, one gets |Jvac| = 0.006 25eV , and the value of |J(Ω, t)| = 1. 660 2eV for τ = 10.
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Figure 5. (Color online) Current I displayed as function of the energy-transfer coupling J for U = 1 eV and ∆f = ∆ff ′ ≡
∆ = 0.01eV . The current shows a maximum at U = −~J . Solid black line - calculations using Eqs.(30) and (31) for
energy and electron transfer, respectively; red dashed line - calculations using Eqs.(30) and (33) for energy, and Eq.(31)
for electron transfer; green dashed line - calculations using Eqs.(30) and (33) for energy, and Eqs.(31) and (34) for electron
transfer. Comparison of these lines displays small effects of non-resonance contributions.

4.1 Calculation of current. Optical switches based on ECCB.

Let us calculate current through the two site quantum dot nanojunction described in the beginning of this
section using approach of Ref.6 where the dipole-dipole interaction between quantum dots of the wire is defined
by Eq.(27). The Hamiltonian of the wire, Eq.(3) of Ref.,6 contained both the energy

Hexc−exc = ~J(Ω, t)b†1b2 + H.c. (30)

and electron transfer interactions written in the resonance approximation

Hel−el = −
∑

f=g,e

∆f (ĉ†2f ĉ1f + ĉ†1f ĉ2f ) (31)

The operators b†m = c†mecmg and bm = c†mgcme are exciton creation and annihilation operators on the molecular
sites m = 1, 2. The Hamiltonian of the Coulomb interactions is expressed as

Hcou =
U

2

∑
m=1,2

Nm(Nm − 1) (32)

with Nm = nmg + nme. Since in the medium with near-zero dielectric permittivities both exciton-exciton
interaction J and on-site Coulomb interaction U can achieve the value of about 1 eV (see above), we account
and add the additional two off-resonance terms to Hexc−exc and Hel−el respectively, as

Hnon−exe−exe = ~J(Ω, t)b†1b
†
2 + H.c. , (33)

Hnon−el−el = −
∑

f,f ′=g,e
f 6=f ′

∆ff ′(ĉ
†
2f ĉ1f ′ + ĉ†1f ′ ĉ2f ) (34)

Eq. 33 is so called non-Heitler-London term30 taking into account creation and annihilation for excitation simul-
taneously at two sites (quantum dots). In this relation the following question arises: ”does the effect of ECCB
survive for such large values of ~J ∼ 1 eV∼ U?”

Fig.5 shows that the ECCB does survive for large values of J ∼ 1 eV. We put the bias voltage Vbs = 8 eV
and the rate of charge transfer from a quantum dot to the corresponding lead Γ = 0.02eV in our simulations,

and denoted the unit of current as I0 =
eΓ
~

(e is the charge of one electron). Fig.6 shows current through the
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Figure 6. (Color online) Laser induced current I (top) and the dipole-dipole interaction in an organic material J (bottom)
displayed as function of τ . Other parameters are identical to those of Figs.1, 2, 3 and 4

nanojunction during the action of the rectangular lase pulse with parameters given in Section3.1 on the host
organic material.

One can see dramatic increasing the current when ~J approaches to −U for ∆g = ∆e, and to ±U for ∆g 6= 0
and ∆e = 0. After this moment the current decreases in spite of increasing J , since its value exceeds that of
U . So, current exists during the time that is much shorter than the pulse duration. As a matter of fact, Fig.6
illustrates a new type of optical switches based on the effect of the exciton compensation of Coulomb blocking -
ECCB switches.

5. CONCLUSION

In this work we have developed a theory of non-steady-state organic plasmonics with strong laser pulses that
enable us to obtain near-zero dielectric permittivity during a short time. We have proposed to use non-steady-
state organic plasmonics for the enhancement of intersite dipolar energy-transfer interaction in the quantum dot
wire that influences on electron transport through nanojunctions. Such interactions can compensate Coulomb
repulsions for particular conditions. We propose the exciton control of Coulomb blocking in the quantum dot
wire based on the non-steady-state near-zero dielectric permittivity of the organic host medium, and a new type
of optical switches - ECCB switches.

Our current calculations were carried out for a fixed value of J(Ω, t) corresponding to Ω = ω21−2. 040 5
√

2σ2s.
The extension of the calculations of current to frequency dependent J(Ω, t) will be made elsewhere.
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